Abstract:
A high-frequency transmission line having low alternate current (AC) resistance is provided. One aspect of the present invention is a high-frequency transmission line disposed along a surface of an insulating support, wherein, letting F [Hz] be the frequency of an AC electric signal transmitted by the high-frequency transmission line and Ms [Wb/m] be the saturation magnetization per unit area, the frequency value F and the saturation magnification value per unit area Ms satisfy the following expression (1): Ms≦(1.5×102)/F+5.7×10−8. (1)
Abstract:
A sheet material includes a resin layer containing a binder and catalyst particles, an electroless plating film on the side of one main surface of the resin layer and including first electroless plating films and a second electroless plating film, and a base material on the side of the other main surface of the resin layer.
Abstract:
A sheet material includes a resin layer containing a binder and polypyrrole particles, an electroless plating film provided on the side of one main surface of the resin layer and including first electroless plating films and a second electroless plating film, and a transparent base material provided on the side of the other main surface of the resin layer.
Abstract:
A preferred terminal structure comprises a base material; an electrode formed on the base material; an insulating covering layer formed on the base material and on the electrode and having an opening exposing at least part of the electrode; an under bump metal layer containing Ni, formed in a region in the opening on the electrode so that an upper surface of the metal layer is at a position lower than an upper surface of the insulating covering layer in a peripheral edge portion of the opening; and a dome-shaped bump containing Sn and Ti, formed in a region in the opening on the under bump metal layer, wherein an end portion of a boundary between the under bump metal layer and the bump is in contact with an inner wall of the opening portion in the insulating covering layer.
Abstract:
The present invention relates to a terminal structure comprising; a base material 10; an external electrode 20 formed on the base material; an insulating coating layer 30 formed on the base material and on the electrode and having an opening exposing at least part of the electrode; an under-bump metal layer 70 filling the opening and covering part of the insulating coating layer; and a dome-shaped bump 85 covering the under-bump metal layer, wherein in a cross section along a lamination direction, the under-bump metal layer has a convex shape toward the bump, and the thickness Tu0 of the under-bump metal layer at a center of the opening is equal to or greater than the thickness Tu1 of the under-bump metal layer at an end portion of the opening.
Abstract:
A coating is provided to a conductor, and has a layered structure of a palladium layer. The palladium layer is amorphous and contains phosphorus in a concentration ranging from 7.3% by mass to 11.0% by mass.
Abstract:
A laminated body contains a first metal layer containing copper; and a second metal layer containing nickel and laminated directly on the first metal layer. A first surface of the second metal layer is a surface in contact with the first metal layer. A second surface of the second metal layer is a reverse face of the first surface. A thickness direction of the second metal layer is a direction approximately perpendicular to the first surface and oriented from the first surface toward the second surface. A unit of a content of nickel in the second metal layer is % by mass. The content of nickel in the second metal layer 2 decreases along the thickness direction D.
Abstract:
A laminated body contains a first metal layer containing copper and a second metal layer containing nickel and laminated directly on the first metal layer. A first surface of the second metal layer is a surface in contact with the first metal layer. A second surface of the second metal layer is a reverse surface of the first surface. A thickness direction of the second metal layer is a direction approximately perpendicular to the first surface and oriented from the first surface toward the second surface. A unit of a content of nickel in the second metal layer is % by mass. The content of nickel in the second metal layer increases along the thickness direction.
Abstract:
A method of producing an electroconductive substrate including a base material, and an electroconductive pattern disposed on one main surface side of the base material includes: a step of forming a trench including a bottom surface to which a foundation layer is exposed, and a lateral surface which includes a surface of a trench formation layer, according to an imprint method; and a step of forming an electroconductive pattern layer by growing metal plating from the foundation layer which is exposed to the bottom surface of the trench.
Abstract:
A method for producing a semiconductor chip is a method for producing a semiconductor chip that includes a substrate, a conductive portion formed on the substrate, and a microbump formed on the conductive portion, which includes a smooth surface formation process of forming a smooth surface on the microbump, and the smooth surface formation process includes a heating process of causing a reducing gas to flow in an inert atmosphere into a space where the semiconductor chips are arranged and heated at or higher than a temperature of a melting point of the microbump, and in the heating process, a pressure application member is mounted on the microbump and among principal surfaces of the pressure application member, a principal surface that contacts the microbump is a flat surface.