Abstract:
A non-volatile memory cell is described. The non-volatile memory cell comprises a substrate, a charge-trapping layer, a gate and a source/drain. The charge-trapping layer comprises an insulating layer and metal nano-particles contained therein, wherein the metal nano-particles are formed with thermal dissociation of an oxide of the same metal. The gate is disposed on the charge-trapping layer, and the source/drain is located in the substrate beside the gate.
Abstract:
An attenuating phase shifting photomask is formed using attenuating phase shifting composite material combining the optical properties of a first material having a high extinction coefficient and a second material having a high index of refraction. The first material is LaNiO.sub.3 and the second material is TiO.sub.2. The first and second materials are combined as a composite of (LaNiO.sub.3).sub.x (TiO.sub.2).sub.1-x to form attenuating phase shifting blanks and masks. Co-deposition of LaNiO.sub.3 and TiO.sub.2 using rf magnetron sputtering is used to form the (LaNiO.sub.3).sub.x (TiO.sub.2).sub.1-x film on a transparent quartz substrate.
Abstract:
A method of forming a low-voltage drive thin film ferroelectric capacitor includes the steps of depositing a ferroelectric and platinum thin film dielectric layer over a bottom electrode, annealing the dielectric layer, wherein a nanocomposite layer is formed including nanoparticles of platinum and forming a top electrode over the dielectric layer. An integrated circuit is also provided including a ferroelectric capacitor. The capacitor includes a bottom electrode formed over a substrate and a ferroelectric and platinum thin film nanocomposite dielectric layer formed over the bottom electrode, wherein the nanocomposite layer includes nanoparticles of platinum. A top electrode is formed over the dielectric layer.
Abstract:
A method of forming a low-voltage drive thin film ferroelectric capacitor includes the steps of depositing a ferroelectric and platinum thin film dielectric layer over a bottom electrode, annealing the dielectric layer, wherein a nanocomposite layer is formed including nanoparticles of platinum and forming a top electrode over the dielectric layer. An integrated circuit is also provided including a ferroelectric capacitor. The capacitor includes a bottom electrode formed over a substrate and a ferroelectric and platinum thin film nanocomposite dielectric layer formed over the bottom electrode, wherein the nanocomposite layer includes nanoparticles of platinum. A top electrode is formed over the dielectric layer.
Abstract:
A non-volatile memory cell is described. The non-volatile memory cell comprises a substrate, a charge-trapping layer, a gate and a source/drain. The charge-trapping layer comprises an insulating layer and metal nano-particles contained therein, wherein the metal nano-particles are formed with thermal dissociation of an oxide of the same metal. The gate is disposed on the charge-trapping layer, and the source/drain is located in the substrate beside the gate.
Abstract:
Zinc oxide (ZnO) varistors containing vanadium oxide as the principal additive and one or more cobalt oxides and/or manganese oxides additives exhibit excellent nonlinear current-voltage characteristics. Preferably the varistor compositions are capable of being sintered at a temperature of from 900.degree. C. to 950.degree. C. The low-firing capability of the newly developed materials is attractive for the application in the multilayer chip varistor, because it can cofire with the silver (Ag) or palladium/silver (Pd/Ag) internal electrode instead of using the expensive palladium (Pd) or platinum (Pt) metal. With an appropriate combination of ZnO, vanadium oxide (V.sub.2 O.sub.5) and other oxide additives, a varistor sintered at 900.degree. C. for 2 hours is obtained with a nonlinear coefficient>50 and a leakage current
Abstract:
An attenuated Phase Shift Mask (PSM) blank and an attenuated Phase Shift Mask (PSM), and a method by which the attenuated Phase Shift Mask (PSM) blank and the attenuated Phase Shift Mask (PSM) may be formed. To form the attenuated Phase Shift Mask (PSM) blank there is first provided a transparent substrate. Formed upon the transparent substrate is a tantalum-silicon oxide blanket semi-transparent shifter layer which has the formula,Ta.sub.x Si.sub.y O.sub.1-x-ywherein 0.1
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a substrate, forming an interfacial layer on the substrate by treating the substrate with radicals, and forming a high-k dielectric layer on the interfacial layer. The radicals are selected from the group consisting of hydrous radicals, nitrogen/hydrogen radicals, and sulfur/hydrogen radicals.
Abstract:
A method for making a metal oxide layer includes: (a) exposing a substrate having oxygen-containing reaction sites to an environment of a first precursor of an organometallic compound, which contains a metal atom and ligand groups, so as to form a chemisorption layer of the first precursor on the substrate; (b) exposing the chemisorption layer on the substrate to a non-free radical environment of a second precursor after step (a) so as to remove the ligand groups of the chemisorption layer that are unreacted in step (a) and so as to convert the chemisorption layer into a metal oxide layer; and (c) after step (b), exposing the metal oxide layer on the substrate to a free radical-containing gas containing free radicals so as to remove the ligand groups of the chemisorption layer that are left unreacted in step (b).
Abstract:
A semiconductor device includes a MOS transistor, and a ferroelectric capacitor formed on the MOS transistor and including upper and lower electrode layers and a dielectric layer sandwiched between the upper and lower electrode layers. Each of the upper and lower electrode layers is made from a Pt—PtOx material, in which x is an integer from 1 to 2, and the weight percentage of PtOx based on the total weight of the Pt—PtOx material is in an amount ranging from 50-100%.
Abstract translation:半导体器件包括MOS晶体管和形成在MOS晶体管上并包括上电极层和下电极层的铁电电容器和夹在上电极层和下电极层之间的电介质层。 上电极层和下电极层中的每一个由Pt-PtO x x材料制成,其中x是1至2的整数,并且PtO x x的重量百分比 基于Pt-PtO xS材料的总重量为50-100%。