Abstract:
A controller outputs a control signal to control a plating liquid supply and a power applying device to perform a first electrolytic plating processing by applying power to a processing surface in a state that a plating liquid is in contact with a first facing range, which is a partial range of an electrode facing surface, and the controller also outputs, after the first electrolytic plating processing is performed, a control signal to control the plating liquid supply and the power applying device to perform a second electrolytic plating processing by applying the power to the processing surface in a state that the plating liquid is in contact with a second facing range of the electrode facing surface, the second facing range being wider than the first facing range.
Abstract:
A plating method includes holding a substrate, supplying a plating liquid L1, supplying a conductive liquid L2 and applying a voltage. In the holding of the substrate, the substrate is held. In the supplying of the plating liquid L1, the plating liquid L1 is supplied onto the held substrate. In the supplying of the conductive liquid L2, the conductive liquid L2, which is different from the plating liquid L1 supplied on the substrate, is supplied onto the plating liquid L1. In the applying of the voltage, the voltage is applied between the substrate and the conductive liquid L2.
Abstract:
An electrolytic treatment apparatus 1 (1A) configured to perform an electrolytic treatment on a target substrate includes a substrate holder 10 and an electrolytic processor 20. The substrate holder 10 includes an insulating holding body 11 configured to hold the target substrate and an indirect negative electrode 12 disposed within the holding body 11. A negative voltage is applied to the indirect negative electrode 12. The electrolytic processor 20 is disposed to face the substrate holder 10 and configured to apply a voltage to the target substrate and an electrolyte in contact with the target substrate.
Abstract:
An electrolytic processing jig configured to perform an electrolytic processing on a processing target substrate by using a processing liquid supplied to the processing target substrate includes a base body having a flat plate shape; and a direct electrode provided on a front surface of the base body and configured to be brought into contact with the processing liquid to apply a voltage between the processing target substrate and the direct electrode. An irregularity pattern is formed on a front surface of the electrolytic processing jig at a processing target substrate side.
Abstract:
A substrate processing apparatus can allow palladium atoms to be coupled to a surface of a substrate without performing a silane coupling processing with a silane coupling agent on the substrate. In a substrate processing apparatus 1, a plating unit 4 includes a catalyst solution supply unit 43a and a plating liquid supply unit 45. The catalyst solution supply unit 43a forms a catalyst layer 91 on a surface of a substrate W1 by supplying, onto the substrate W1, a catalyst solution L1 containing a complex of a palladium ion and a monocyclic 5- or 6-membered aromatic or aliphatic heterocyclic compound having one or two nitrogen atoms as a heteroatom. After the catalyst solution L1 is supplied, the plating liquid supply unit 45 forms an electroless plating layer 92 on the catalyst layer 91 formed on a substrate W2 by supplying a plating liquid M1 onto the substrate W2.
Abstract:
A manufacturing apparatus for a semiconductor device includes a substrate holding unit configured to hold a substrate; a processing liquid supply unit configured to supply a processing liquid onto the substrate held by the substrate holding unit; an electrolytic processing unit disposed to face the substrate holding unit and configured to perform an electrolytic processing on the substrate held by the substrate holding unit; and a terminal configured to apply a voltage to the substrate. The electrolytic processing unit includes a direct electrode configured to be brought into contact with the processing liquid supplied onto the substrate to apply a voltage with respect to the substrate; and an indirect electrode configured to form an electric field in the processing liquid supplied onto the substrate.
Abstract:
An electrolytic treatment apparatus of the present disclosure includes a common electrode and a counter electrode that are disposed such that the treatment liquid is interposed therebetween. A first wiring and a second wiring are connected to the common electrode, a capacitor is provided in the first wiring. Copper ions are moved to the counter electrode side by forming an electric field in the treatment liquid when the capacitor is charged without connecting the first wiring and the second wiring to each other, and the copper ions moved to the counter electrode side are reduced by applying a voltage between the common electrode and the counter electrode when the capacitor is discharged by connecting the first wiring and the second wiring to each other.
Abstract:
An adhesion layer formed of a thin film can be formed on a surface of a substrate. An adhesion layer forming method of forming the adhesion layer on the substrate includes supplying a coupling agent onto the substrate 2 while rotating the substrate 2. The substrate 2 is rotated at a low speed equal to or less than 300 rpm and the coupling agent diluted with IPA is supplied onto the substrate 2.