Abstract:
A semiconductor structure includes a substrate. The substrate is divided into a first element region, a second element region and a boundary region. The boundary region is disposed between the first element region and a second element region. A first mask structure covers the first element region. A second mask structure is disposed in the second element region. A logic gate structure is disposed within the second element region.
Abstract:
A memory cell includes a substrate. A first STI and a second STI are embedded within the substrate. The first STI and the second STI extend along a first direction. An active region is disposed on the substrate and between the first STI and the second STI. A control gate is disposed on the substrate and extends along a second direction. The first direction is different from the second direction. A tunneling region is disposed in the active region overlapping the active region. A first trench is embedded within the tunneling region. Two second trenches are respectively embedded within the first STI and the second STI. The control gate fills in the first trench and the second trenches. An electron trapping stack is disposed between the tunneling region and the control gate.
Abstract:
A method for fabricating gate structures includes providing a substrate, configured to have a first region and a second region. Dummy gate structures are formed on the substrate at the first and second regions, wherein each of the dummy gate structures has a first gate insulating layer on the substrate and a dummy gate on the first gate insulating layer. An inter-layer dielectric layer is formed over the dummy gate structures. The inter-layer dielectric layer is polished to expose all of the dummy gates. The dummy gates are removed. The first gate insulating layer at the second region is removed. A second gate insulating layer is formed on the substrate at the second region, wherein the first gate insulating layer is thicker than the second insulating layer. Metal gates are formed on the first and the second insulating layer.
Abstract:
A method for fabricating gate structures includes providing a substrate, configured to have a first region and a second region. Dummy gate structures are formed on the substrate at the first and second regions, wherein each of the dummy gate structures has a first gate insulating layer on the substrate and a dummy gate on the first gate insulating layer. An inter-layer dielectric layer is formed over the dummy gate structures. The inter-layer dielectric layer is polished to expose all of the dummy gates. The dummy gates are removed. The first gate insulating layer at the second region is removed. A second gate insulating layer is formed on the substrate at the second region, wherein the first gate insulating layer is thicker than the second insulating layer. Metal gates are formed on the first and the second insulating layer.
Abstract:
Provided is a semiconductor structure including a substrate, an isolation structure, a fuse and two gate electrodes. The isolation structure is located in the substrate and defines active regions of the substrate. The fuse is disposed on the isolation structure. The gate electrodes are disposed on the active regions and connected to ends of the fuse. In an embodiment, a portion of a bottom surface of the fuse is lower than top surfaces of the active regions of the substrate.
Abstract:
A semiconductor memory device includes a substrate, having a plurality of cell regions, wherein the cell regions are parallel and extending along a first direction. A plurality of STI structures is disposed in the substrate, extending along the first direction to isolate the cell regions, wherein the STI structures have a uniform height lower than the substrate in the cell regions. A selection gate line is extending along a second direction and crossing over the cell regions and the STI structures. A control gate line is adjacent to the selection gate line in parallel extending along the second direction and also crosses over the cell regions and the STI structures. The selection gate line and the control gate line together form a two-transistor (2T) memory cell.
Abstract:
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a substrate, a plurality of isolation structures, a charge storage layer, and a conductive layer. The substrate has a memory region and a logic region. The substrate in the memory region has a plurality of semiconductor fins. The isolation structures are disposed in the substrate to isolate the semiconductor fins. The semiconductor fins are protruded beyond the isolation structures. The charge storage layer covers the semiconductor fins. The conductive layer is disposed across the semiconductor fins and the isolation structures such that the charge storage layer is disposed between the conductive layer and the semiconductor fins.
Abstract:
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a semiconductor substrate having a tunneling well, a tunneling oxide layer, a charge storage layer and a control gate. The tunneling oxide layer is disposed on the tunneling well. The tunneling oxide layer includes a first tunneling oxide segment having a first thickness, a second tunneling oxide segment having a second thickness, and a third tunneling oxide segment having a third thickness, and the first thickness, the second thickness and the third thickness are different from each other. The charge storage layer is disposed on the tunneling oxide layer, and the control gate is disposed on the charge storage layer.
Abstract:
A method for fabricating a semiconductor device includes forming a patterned multi-layered dielectric film on a substrate; forming a patterned stack on the patterned multi-layered dielectric film so that an edge of the patterned multi-layered dielectric film is exposed from the patterned stack; forming a cover layer to cover a part of the substrate and expose the patterned stack and the exposed edge of the patterned multi-layered dielectric film; removing at least a part of the exposed edge of the patterned multi-layered dielectric film by using the cover layer and the patterned stack as an etching mask; and performing an ion implantation process by using the cover layer as an etching mask so as to form a doped region.
Abstract:
A memory cell includes a substrate. A first STI and a second STI are embedded within the substrate. The first STI and the second STI extend along a first direction. An active region is disposed on the substrate and between the first STI and the second STI. A control gate is disposed on the substrate and extends along a second direction. The first direction is different from the second direction. A tunneling region is disposed in the active region overlapping the active region. A first trench is embedded within the tunneling region. Two second trenches are respectively embedded within the first STI and the second STI. The control gate fills in the first trench and the second trenches. An electron trapping stack is disposed between the tunneling region and the control gate.