摘要:
Embodiments of an apparatus and methods for providing three-dimensional complementary metal oxide semiconductor devices comprising modulation doped transistors are generally described herein. Other embodiments may be described and claimed.
摘要:
Nanowire-based gate all-around transistor devices having one or more active nanowires and one or more inactive nanowires are described herein. Methods to fabricate such devices are also described. One or more embodiments of the present invention are directed at approaches for varying the gate width of a transistor structure comprising a nanowire stack having a distinct number of nanowires. The approaches include rendering a certain number of nanowires inactive (i.e. so that current does not flow through the nanowire), by severing the channel region, burying the source and drain regions, or both. Overall, the gate width of nanowire-based structures having a plurality of nanowires may be varied by rendering a certain number of nanowires inactive, while maintaining other nanowires as active.
摘要:
A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
摘要:
Techniques are disclosed for forming a non-planar quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), and a quantum well layer. A fin structure is formed in the quantum well structure, and an interfacial layer provided over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
摘要:
A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
摘要:
A group III chalcogenide layer for interfacing a high-k dielectric to a III-V semiconductor surface and methods of forming the same. A III-V QWFET includes a gate stack which comprises a high-K gate dielectric layer disposed on an interfacial layer comprising a group III chalcogenide. In an embodiment, a III-V semiconductor surface comprising a native oxide is sequentially exposed to TMA and H2S provided in an ALD process to remove substantially all the native oxide and form an Al2S3 layer on the semiconductor surface.
摘要翻译:用于将高k电介质与III-V半导体表面接合的III族硫属化物层及其形成方法。 III-V QWFET包括栅极堆叠,其包括设置在包含III族硫族化物的界面层上的高K栅极电介质层。 在一个实施方案中,包含天然氧化物的III-V半导体表面依次暴露于在ALD工艺中提供的TMA和H 2 S以去除基本上所有的天然氧化物并在半导体表面上形成Al 2 S 3层。
摘要:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
摘要:
A multi-gate device having a T-shaped gate structure is generally described. In one example, an apparatus includes a semiconductor substrate, at least one multi-gate fin coupled with the semiconductor substrate, the multi-gate fin having a gate region, a source region, and a drain region, the gate region being positioned between the source and drain regions, a gate dielectric coupled to the gate region of the multi-gate fin, a gate electrode coupled to the gate dielectric, the gate electrode having a first thickness and a second thickness, the second thickness being greater than the first thickness, a first spacer dielectric coupled to a portion of the gate electrode having the first thickness, and a second spacer dielectric coupled to the first spacer dielectric and coupled to the gate electrode where the second spacer dielectric is coupled to a portion of the gate electrode having the second thickness.
摘要:
A transistor gate comprises a substrate having a pair of spacers disposed on a surface, a high-k dielectric conformally deposited on the substrate between the spacers, a recessed workfunction metal conformally deposited on the high-k dielectric and along a portion of the spacer sidewalls, a second workfunction metal conformally deposited on the recessed workfunction metal, and an electrode metal deposited on the second workfunction metal. The transistor gate may be formed by conformally depositing the high-k dielectric into a trench between the spacers on the substrate, conformally depositing a workfunction metal atop the high-k dielectric, depositing a sacrificial mask atop the workfunction metal, etching a portion of the sacrificial mask to expose a portion of the workfunction metal, and etching the exposed portion of the workfunction metal to form the recessed workfunction metal. The second workfunction metal and the electrode metal may be deposited atop the recessed workfunction metal.
摘要:
Embodiments of the present invention describe a method of fabricating a III-V quantum well transistor with low current leakage and high on-to-off current ratio. A hydrophobic mask having an opening is formed on a semiconductor film. The opening exposes a portion on the semiconductor film where a dielectric layer is desired to be formed. A hydrophilic surface is formed on the exposed portion of the semiconductor film. A dielectric layer is then formed on the hydrophilic surface by using an atomic layer deposition process. A metal layer is deposited on the dielectric layer.