摘要:
The present invention relates to a catalyst for decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms, comprising magnesium, aluminum, nickel and cobalt as constitutional elements, and further comprising ruthenium and/or palladium, wherein the metallic ruthenium and/or metallic palladium in the form of fine particles have an average particle diameter of 0.5 to 20 nm, and a content of the metallic ruthenium and/or metallic palladium is 0.05 to 5.0% by weight based on the weight of the catalyst. The catalyst of the present invention is capable of efficiently decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms (C2 or more hydrocarbons), is less expensive, and exhibits an excellent catalytic activity for decomposition and removal of hydrocarbons, in particular, an excellent capability of decomposing propane, and an excellent anti-coking property.
摘要:
A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2-w-xA′wA″xB2-y-zB′yB″zO7-Δ. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.
摘要:
Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.
摘要:
The present invention relates to stabilized supports stable at temperatures above 800° C., and method of preparing such supports, which includes adding a rare earth metal to an aluminum-containing precursor prior to calcining. The present invention can be more specifically seen as a support, process and catalyst wherein the stabilized alumina catalyst support comprises a rare earth aluminate with a molar ratio of aluminum to rare earth metal greater than 5:1 and, optionally, an aluminum oxide. More particularly, the invention relates to the use of catalysts comprising rhodium, ruthenium, iridium, or combinations thereof, loaded onto said stabilized supports for the synthesis gas production via partial oxidation of light hydrocarbons, and further relates to gas-to-liquids conversion processes.
摘要:
The present invention relates to a catalyst for decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms, comprising magnesium, aluminum, nickel and cobalt as constitutional elements, and further comprising ruthenium and/or palladium, wherein the metallic ruthenium and/or metallic palladium in the form of fine particles have an average particle diameter of 0.5 to 20 nm, and a content of the metallic ruthenium and/or metallic palladium is 0.05 to 5.0% by weight based on the weight of the catalyst. The catalyst of the present invention is capable of efficiently decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms (C2 or more hydrocarbons), is less expensive, and exhibits an excellent catalytic activity for decomposition and removal of hydrocarbons, in particular, an excellent capability of decomposing propane, and an excellent anti-coking property.
摘要:
An oxidation catalyst for purifying an exhaust gas, which can provide an excellent catalyst activity at lower temperatures for particulates and high boiling point hydrocarbons in an exhaust gas of an internal combustion engine, is provided. The oxidation catalyst for purifying an exhaust gas is composed of a composite metal oxide represented by the general formula: Y1-xAgxMnO3, wherein 0.01≦x≦0.15. The composite metal oxide is represented by the general formula: Y1-xAgxMn1-yAyO3, wherein A is one metal selected from the group consisting of Ti, Nb, Ta and Ru, and 0.005≦y≦0.2.
摘要:
A homogeneous ceria-based mixed-metal oxide, useful as a catalyst support, a co-catalyst and/or a getter has a relatively large surface area per weight, typically exceeding 150 m2/g, a structure of nanocrystallites having diameters of less than 4 nm, and including pores larger than the nanocrystallites and having diameters in the range of 4 to about 9 nm. The ratio of pore volumes, VP, to skeletal structure volumes, VS, is typically less than about 2.5, and the surface area per unit volume of the oxide material is greater than 320 m2/cm3, for low internal mass transfer resistance and large effective surface area for reaction activity. The mixed metal oxide is ceria-based, includes Zr and or Hf, and is made by a novel co-precipitation process. A highly dispersed catalyst metal, typically a noble metal such as Pt, may be loaded on to the mixed metal oxide support from a catalyst metal-containing solution following a selected acid surface treatment of the oxide support. Appropriate ratioing of the Ce and other metal constituents of the oxide support contribute to it retaining in a cubic phase and enhancing catalytic performance. Rhenium is preferably further loaded on to the mixed-metal oxide support and passivated, to increase the activity of the catalyst. The metal-loaded mixed-metal oxide catalyst is applied particularly in water gas shift reactions as associated with fuel processing systems, as for fuel cells.
摘要:
A fluidized bed catalyst for producing acrylonitrile capable of maintaining a high yield of acrylonitrile over a long time, and a process for producing acrylonitrile using the catalyst are provided. A fluidized bed catalyst for producing acrylonitrile having a composition represented by a following general formula: MoaBibFecWdNieMgfAgBhCiDjEkFlGmOn(SiO2)p In the formula, A represents Ce and La, B represents Ca, Sr, Ba, Mn, Co, Cu, Zn and Cd, C represents Y, Pr, Nd, Sm, Al, Cr, Ga and In, D represents Ti, Zr, V, Nb, Ta, Ge, Sn, Pb and Sb, E represents Ru, Rh, Pd, Re, Os, Ir, Pt and Ag, F represents P, B and Te, G represents Li, Na, K, Rb, Cs and Tl, SiO2 represents silica, when a=10, b=0.1 to 1.5, c=0.5 to 3, d=0.1 to 1.5, e=0.1 to 8, f=0.1 to 5, g=0.1 to 1.5, h=0 to 8, i=0 to 3, j=0 to 3, k=0 to 3, l=0 to 3, m=0.01 to 2, p=10 to 200 and n is the atomic ratio of oxygen required to satisfy the valence of each of the elements excluding silicon, and (a×2+d×2)/(b×3+c×3+e×2+f×2+g×3+h×2+i×3+m×1)=0.90 to 1.00).
摘要:
A homogeneous ceria-based mixed-metal oxide, useful as a catalyst support, a co-catalyst and/or a getter has a relatively large surface area per weight, typically exceeding 150 m2/g, a structure of nanocrystallites having diameters of less than 4 nm, and including pores larger than the nanocrystallites and having diameters in the range of 4 to about 9 nm. The ratio of pore volumes, VP, to skeletal structure volumes, VS, is typically less than about 2.5, and the surface area per unit volume of the oxide material is greater than 320 m2/cm3, for low internal mass transfer resistance and large effective surface area for reaction activity. The mixed metal oxide is ceria-based, includes Zr and or Hf, and is made by a novel co-precipitation process. A highly dispersed catalyst metal, typically a noble metal such as Pt, may be loaded on to the mixed metal oxide support from a catalyst metal-containing solution following a selected acid surface treatment of the oxide support. Appropriate ratioing of the Ce and other metal constituents of the oxide support contribute to it retaining in a cubic phase and enhancing catalytic performance. Rhenium is preferably further loaded on to the mixed-metal oxide support and passivated, to increase the activity of the catalyst. The metal-loaded mixed-metal oxide catalyst is applied particularly in water gas shift reactions as associated with fuel processing systems, as for fuel cells.
摘要翻译:可用作催化剂载体,助催化剂和/或吸气剂的均匀的二氧化铈基混合金属氧化物具有相对较大的每重量的表面积,通常超过150m 2 / g, 具有直径小于4nm的纳米晶体的结构,并且包括大于纳米微晶并且直径在4至约9nm范围内的孔。 孔体积V V P与骨架结构体积V S S的比例通常小于约2.5,并且氧化物材料的每单位体积的表面积为 大于320m 2 / cm 3,因为低的内部传质阻力和反应活性的大的有效表面积。 复合金属氧化物是二氧化铈基,包括Zr和Hf,并且通过新的共沉淀法制备。 通过选择的氧化物载体的酸表面处理,可以将高度分散的催化剂金属(通常为贵金属如Pt)负载到来自含催化剂金属的溶液的混合金属氧化物载体上。 Ce和其他金属成分对氧化物载体的适当比例有助于其保持立方相并提高催化性能。 优选将铼进一步负载在混合金属氧化物载体上并钝化,以提高催化剂的活性。 负载金属的混合金属氧化物催化剂特别适用于燃料处理系统与燃料电池相关的水煤气变换反应。
摘要:
A supported catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.