Abstract:
Disclosed is a method for improving vibration damping of a substrate, such as the underbody of an automobile. The method comprises applying a plastisol which comprises a polymeric component and a plasticizer. The fused plastisol has improved damping behavior as determined using Dynamic Mechanical Thermal Analysis. Novel plastisols and novel plasticizers are also disclosed.
Abstract:
A system is provided for separating a bodily fluid, such as blood, into two or more constituent parts. The system is configured to cooperate with a fluid flow circuit including a spinning membrane-type fluid separation chamber having a housing, with a fluid inlet port and at least one fluid outlet port. A rotor is positioned within the housing so as to define a gap between the rotor and an inside surface of the housing, with the rotor being rotatable relative to the housing about an axis. A membrane is mounted on the rotor and/or on the inside surface of the housing and faces the gap to separate bodily fluid within the housing into two or more constituent parts. The membrane includes an anti-thrombogenic material, which may be either incorporated into the material of the membrane or coated onto at least a portion of the membrane.
Abstract:
The present specification discloses porous materials, methods of forming such porous materials, biocompatible implantable devices comprising such porous materials, and methods of making such biocompatible implantable devices.
Abstract:
Devices, systems, and methods for detecting molecules of interest within a collected sample are described herein. In certain embodiments, self-contained sample analysis systems are disclosed, which include a reusable reader component, a disposable cartridge component, and a disposable sample collection component. In some embodiments, the reader component communicates with a remote computing device for the digital transmission of test protocols and test results. In various disclosed embodiments, the systems, components, and methods are configured to identify the presence, absence, and/or quantity of particular nucleic acids, proteins, or other analytes of interest, for example, in order to test for the presence of one or more pathogens or contaminants in a sample.
Abstract:
This system takes in raw cellular material collected using a provided swab, blood collection device, urine collection device, or other sample collection device and transforms that biological material into a digital result, identifying the presence, absence and/or quantity of nucleic acids, proteins, and/or other molecules of interest.
Abstract:
An optical sheet, which can suitably absorb external light over a wide range and can improve a contrast, a display device, and a method for producing an optical sheet. The optical sheet is disposed on an observer side relative to an image light source and includes: a plurality of layers that control light emitted from the image light source to emit the light on the observer side, wherein at least one of the plurality of layers is an optical functional sheet layer which includes prisms being arranged in parallel along the surface of the optical sheet whereby light can be transmitted and wedge portions are arranged in parallel between the prisms whereby light can be absorbed. At least one of the plurality of layers other than the optical functional sheet layer is a light-absorbing layer.
Abstract:
A decorative sheet includes a primary film layer and a surface protection layer provided on one surface of the primary film layer. The surface protection layer has, in its surface, a ridged portion protruding in a ridged pattern to form an irregular shape. The irregular shape of the surface protection layer has RSm/Ra within the range of 10 or greater and 300 or smaller. The surface protection layer includes an ionizing radiation-curable resin as a main material. The ionizing radiation-curable resin is a trifunctional acrylic resin with the main component having a repeating structure. The repeating structure is any of an ethylene oxide structure, a propylene oxide structure, and an ε-caprolactone structure. The single-bonded carbon ratio in the main component of the ionizing radiation-curable resin falls within the range of 0.725 or greater and 0.955 or smaller.
Abstract:
Unique polymers and copolymers generated via oMLD processes are described alongside the methods for tuning such polymer and copolymer structures and redox chemistries. The polymers and copolymers described can incorporate monomeric species previously held to have too high an oxidation potential for successful use in oMLD, can exhibit unexpected redox chemistry from the adjustable incorporation of primary amine monomers and resulting azo functional groups, and show superior performance metrics when compared to polymers and copolymers synthesized by other methods. Applications for these polymers and copolymers are also described.
Abstract:
A method of improving the adhesion of a metal-organic interface in an electronic device includes providing a substrate with a metal structure, treating a surface of the metal structure to form a monolayer coating of a selected chemical composition on the surface, and coating the treated surface with an organic material.