-
公开(公告)号:US09896746B2
公开(公告)日:2018-02-20
申请号:US14711541
申请日:2015-05-13
Applicant: BEIJING UNIVERSITY OF TECHNOLOGY
Inventor: Hongli Suo , Yichen Meng , Lin Ma , Min Liu , Yi Wang , Mangmang Gao , Hui Tian , Yaru Liang , Pan Wang , Faxue Peng , Jing Liu , Tiantian Wang
CPC classification number: C22C19/03 , B22F3/24 , B22F7/008 , B22F7/02 , B22F2998/10 , B22F2999/00 , C22C1/0433 , C22F1/10 , H01L39/2454 , B22F1/0003 , B22F2009/041 , B22F3/15 , B22F2003/185 , B22F3/18 , B22F2003/248 , B22F2009/043 , B22F2201/013 , B22F2202/06
Abstract: A method for preparing element diffusion-type composite substrate and it belongs to the field of high-temperature coated superconductor substrate preparation. The rolled composite nickel-tungsten alloy substrate is heated and thermally insulated, meanwhile, both ends of the rolled substrate are applied with a low voltage and high current density pulse current. High-performance nickel-tungsten alloy composite substrate is obtained with the method in the present invention and the sandwich-like composite substrate has low ferromagnetism and high strength due to higher solute diffusion from inner layer to outer layer, yet which does not affect the formation of sharp cubic texture on the surface of the composite substrate. On the one hand, the adoption of electric pulse technology accelerates the interdiffusion effect of inter-layer elements, on the other hand, it promotes the recrystallization nucleation and reduces the recrystallization annealing temperature of the composite substrate, thus energy saving effect is achieved and the negative effects of annealing thermal erosion grooves among crystal boundary to subsequent coating are effectively reduced. Alloy composite substrate prepared in this invention has the characteristics of high cubic texture content, low magnetism, high strength, and can be applied to large-scale industrial production.
-
公开(公告)号:US09827611B2
公开(公告)日:2017-11-28
申请号:US14610431
申请日:2015-01-30
Applicant: DIAMOND INNOVATIONS, INC.
Inventor: Abds-Sami Malik , Thomas Charles Easley , Stephen Allen Kaiser , Torbjorn Selinder
CPC classification number: B22F7/08 , B22F7/008 , B22F2005/001 , B24D18/00 , B24D99/005 , C22C29/08
Abstract: A tool and a method of making the tool are disclosed. The tool includes a superabrasive compact, for example, a volume of silicon carbide diamond bonded composite, directly bonded to a tungsten carbide body during sintering. The green body may have a recess with a complementary shape to the superabrasive compact, whereby after inserting at least a part of the superabrasive compact within the recess and sintering, the tungsten carbide body and the recess shrink to form an interference fit therebetween.
-
公开(公告)号:US09821373B2
公开(公告)日:2017-11-21
申请号:US14938849
申请日:2015-11-12
IPC: B22F7/00 , B22F7/02 , B22F3/10 , B22F3/105 , B22F3/22 , B22F7/06 , B32B18/00 , C04B35/111 , C04B35/119 , C04B35/488 , C04B35/634 , C04B35/638 , C04B35/645 , A61F2/32 , B22F3/12 , B22F3/15 , C04B35/64 , A61F2/36
CPC classification number: B22F7/02 , A61F2/32 , A61F2/3601 , B22F3/1021 , B22F3/105 , B22F3/12 , B22F3/15 , B22F3/225 , B22F7/008 , B22F7/06 , B32B18/00 , C04B35/111 , C04B35/119 , C04B35/4885 , C04B35/634 , C04B35/638 , C04B35/64 , C04B35/6455 , C04B2235/3225 , C04B2235/3229 , C04B2235/6022 , C04B2235/77 , C04B2235/96 , C04B2237/343 , C04B2237/348 , C04B2237/58 , C04B2237/84
Abstract: A manufacturing method of a multilayer shell-core composite structural component comprises the following procedures: (1) respectively preparing feeding material for injection forming of a core layer, a buffer layer and a shell layer, wherein the powders of feeding material of the core layer and the shell layer are selected from one or more of metallic powder, ceramic powder or toughened ceramic powder, and are different from each other, and the powder of feeding material of the buffer layer is gradient composite material powder; (2) layer by layer producing the blank of multilayer shell-core composite structural component by powder injection molding; (3) degreasing the blank; and (4) sintering the blank to obtain the multilayer shell-core composite structural component. The multilayer shell-core composite structural component has the advantages of high surface hardness, abrasion resistance, uniform thickness of the shell layer, stable and persistent performance.
-
公开(公告)号:US20170327701A1
公开(公告)日:2017-11-16
申请号:US15594472
申请日:2017-05-12
Applicant: NanoCore Technologies
Inventor: Stephen T. Connor , James R. Groves , Theodore C. Sorom
IPC: C09D5/38 , B33Y10/00 , C22C38/58 , C22C38/44 , C22C38/34 , C22C38/02 , C22C27/06 , C22C19/05 , C22C11/06 , C22C9/08 , C22C9/02 , C21D6/00 , C09D169/00 , C09D133/02 , C22F1/08 , B33Y70/00 , B22F1/00 , B22F3/10 , B22F3/105 , B22F7/02 , B22F7/00 , B22F3/24 , C22F1/10
CPC classification number: C09D5/38 , B22F1/0014 , B22F1/0022 , B22F1/0074 , B22F3/1017 , B22F3/1055 , B22F3/24 , B22F7/008 , B22F7/02 , B22F2003/1042 , B22F2003/1058 , B22F2003/248 , B22F2301/10 , B22F2301/15 , B22F2301/35 , B22F2998/10 , B33Y10/00 , B33Y70/00 , C08K3/08 , C09D7/67 , C09D7/68 , C09D7/69 , C09D133/02 , C09D169/00 , C21D6/004 , C21D6/005 , C21D6/007 , C21D6/008 , C22C9/02 , C22C9/08 , C22C11/06 , C22C19/056 , C22C19/058 , C22C27/06 , C22C38/02 , C22C38/34 , C22C38/44 , C22C38/58 , C22F1/08 , C22F1/10
Abstract: A material and method are disclosed such that the material can be used to form functional metal pieces by producing an easily sintered layered body of dried metal paste. On a microstructural level, when dried, the metal paste creates a matrix of porous metal scaffold particles with infiltrant metal particles, which are positioned interstitially in the porous scaffold's interstitial voids. For this material to realize mechanical and processing benefits, the infiltrant particles are chosen such that they pack in the porous scaffold piece in a manner which does not significantly degrade the packing of the scaffold particles and so that they can also infiltrate the porous scaffold on heating. The method of using this paste provides a technique deposition/removal process.
-
公开(公告)号:US09789663B2
公开(公告)日:2017-10-17
申请号:US14151081
申请日:2014-01-09
Applicant: Zhihui Zhang , Zhiyue Xu
Inventor: Zhihui Zhang , Zhiyue Xu
IPC: B32B15/00 , B32B15/01 , B22F7/00 , B22F7/02 , C22C21/00 , C22C21/02 , C22C21/06 , C22C21/08 , C22C21/10 , C22C21/12 , C22C21/16 , C22C23/00 , C22C23/02 , C22C23/04 , B22F1/02
CPC classification number: B32B15/01 , B22F1/02 , B22F7/008 , B22F7/02 , B32B15/013 , C22C21/00 , C22C21/02 , C22C21/06 , C22C21/08 , C22C21/10 , C22C21/12 , C22C21/16 , C22C23/00 , C22C23/02 , C22C23/04 , Y10T428/12708 , Y10T428/12729
Abstract: A metal composite comprises: a first matrix comprising magnesium, a magnesium alloy, or a combination thereof; a second matrix comprising aluminum, an aluminum alloy, steel, a zinc alloy, a tin alloy, or a combination comprising at least one of the foregoing; a corrosion reinforcement material; and a boundary layer disposed between the first matrix and the second matrix; wherein the boundary layer has a thickness of 10 nm to 200 μm.
-
公开(公告)号:US20170275742A1
公开(公告)日:2017-09-28
申请号:US15456872
申请日:2017-03-13
Applicant: A. Jacob Ganor
Inventor: A. Jacob Ganor
IPC: C22C38/14 , C04B35/626 , C04B35/645 , C22C38/12 , B22F7/00 , C22C38/06 , C22C38/00 , C22C33/02 , B22F9/04 , B22F3/16 , C04B35/80 , C22C38/10
CPC classification number: C22C38/14 , B22F3/16 , B22F7/008 , B22F9/04 , B22F2009/043 , B22F2301/35 , B22F2302/205 , B22F2302/35 , B22F2998/10 , C04B35/6261 , C04B35/645 , C04B35/806 , C04B2235/3804 , C04B2235/3817 , C04B2235/5284 , C04B2235/602 , C22C33/0228 , C22C33/0285 , C22C38/002 , C22C38/06 , C22C38/105 , C22C38/12
Abstract: The present invention provides for materials and methods of making metal and ceramic matrix composites reinforced with boron nitride nanomaterials for improved physical properties such as hardness, fracture toughness, and bend strength.
-
公开(公告)号:US20170259340A1
公开(公告)日:2017-09-14
申请号:US15529125
申请日:2015-11-24
Applicant: JFE STEEL CORPORATION
Inventor: Takuya TAKASHITA , Akio KOBAYASHI , Naomichi NAKAMURA , Toshio MAETANI , Akio SONOBE , Itsuya SATO
CPC classification number: B22F7/008 , B22F1/0003 , B22F1/0014 , B22F1/0055 , B22F1/0059 , B22F2301/10 , B22F2301/35 , B22F2302/40 , B22F2303/01 , B22F2304/10 , C22C33/0264 , C22C38/12 , C22C38/16
Abstract: An Fe—Mo—Cu—C-based alloy steel powder for powder metallurgy has a chemical composition containing Mo: 0.2 mass % to 1.5 mass %, Cu: 0.5 mass % to 4.0 mass %, and C: 0.1 mass % to 1.0 mass %, with a balance being Fe and incidental impurities, wherein an iron-based powder has a mean particle size of 30 μm to 120 μm, and a Cu powder has a mean particle size of 25 μm or less. Despite the alloy steel powder for powder metallurgy having a chemical composition not containing Ni, a part produced by sintering a press formed part of the powder and further carburizing-quenching-tempering the sintered part has mechanical properties of at least as high tensile strength, toughness, and sintered density as a Ni-added part.
-
公开(公告)号:US20170248319A1
公开(公告)日:2017-08-31
申请号:US15595760
申请日:2017-05-15
Applicant: General Electric Company
Inventor: Kevin Weston McMahan , Geoffrey David Myers
IPC: F23R3/28 , F01D5/28 , F01D9/02 , F01D9/04 , F01D25/00 , F04D29/02 , F04D29/32 , F23R3/00 , B33Y10/00 , B33Y80/00 , B22F3/105 , B22F5/00 , B22F5/04 , B22F7/02 , B22F7/00 , B23K26/342 , B23K26/00 , B23K15/00 , B28B1/00 , F01D5/14
CPC classification number: F23R3/286 , B22F3/1055 , B22F5/009 , B22F5/04 , B22F7/008 , B22F7/02 , B22F7/06 , B22F2207/17 , B22F2301/15 , B22F2301/205 , B22F2301/35 , B22F2998/10 , B23K15/0086 , B23K15/0093 , B23K26/0006 , B23K26/32 , B23K26/342 , B23K2101/001 , B23K2103/05 , B23K2103/08 , B23K2103/14 , B23K2103/166 , B23K2103/24 , B23K2103/26 , B28B1/001 , B29C64/153 , B32B7/02 , B32B15/01 , B32B2264/105 , B32B2307/102 , B32B2307/304 , B32B2603/00 , B32B2605/18 , B33Y10/00 , B33Y80/00 , F01D5/147 , F01D5/28 , F01D9/023 , F01D9/041 , F01D25/005 , F04D29/023 , F04D29/324 , F05D2230/22 , F05D2230/31 , F05D2300/10 , F05D2300/6111 , F23K5/00 , F23M5/00 , F23M2900/05004 , F23R3/00 , F23R3/002 , F23R2900/00018 , Y02P10/295 , Y10T428/12028
Abstract: A system includes a layered structure. The layered structure includes first and second coalesced layers and an intermediate layer disposed between the first and second coalesced layers. The first and second coalesced layers have a higher degree of coalescence than the intermediate layer.
-
公开(公告)号:US09707623B2
公开(公告)日:2017-07-18
申请号:US14083047
申请日:2013-11-18
Applicant: Robert G. Lee
Inventor: Robert G. Lee
IPC: B22F1/00 , B22F7/00 , B22F7/02 , B22F7/04 , C22C29/00 , C22C32/00 , F41H5/04 , C22B5/06 , C22B34/12 , C22C29/10 , B22F7/06 , B22F7/08 , C22C1/10 , C22C29/06 , C22B1/245
CPC classification number: B22F7/008 , B22F7/02 , B22F7/04 , B22F7/062 , B22F7/08 , B22F2998/10 , B22F2999/00 , C22B1/245 , C22B5/06 , C22B34/1281 , C22C1/1068 , C22C29/00 , C22C29/067 , C22C29/10 , C22C32/0047 , C22C32/0052 , F41H5/04 , Y10T156/10 , Y10T428/12493 , Y10T428/31678 , B22F3/02 , B22F3/15 , B22F3/1007 , B22F2201/20
Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
-
公开(公告)号:US20170130351A1
公开(公告)日:2017-05-11
申请号:US15321795
申请日:2015-06-23
Applicant: Rio Tinto Alcan International Limited
Inventor: Christian Barthelemy , Sylvie Bouvet , Armand Gabriel , Véronique Laurent , Ariane Marmottant
IPC: C25C3/12 , C22C19/00 , C22C29/12 , C25C7/02 , C04B35/626 , B22F3/16 , B22F7/04 , B22F7/00 , C04B35/26 , C22C19/03 , C25C7/00
CPC classification number: C25C3/12 , B22F3/16 , B22F7/008 , B22F7/02 , B22F7/04 , B22F2301/15 , B22F2302/25 , B22F2998/10 , C04B35/2666 , C04B35/62675 , C04B2235/3222 , C04B2235/3225 , C04B2235/3274 , C04B2235/3279 , C22C1/1084 , C22C19/002 , C22C19/03 , C22C29/005 , C22C29/12 , C22C2204/00 , C25C7/005 , C25C7/025 , B22F3/02 , B22F3/10
Abstract: The invention relates to an electrode material, preferably an inert anode material comprising at least a metal core and a cermet material, characterized in that: said metal core contains at least one nickel (Ni) and iron (Fe) alloy, said cermet material comprises at least as percentages by weight: 45 to 80% of a nickel ferrite oxide phase (2) of composition NixFeyMzO4 with 0.60 ≦x≦0.90; 1.90≦y≦2.40; 0.00≦z≦0.20 and M being a metal selected from aluminum (Al), cobalt (Co), chromium (Cr), manganese (Mn), titanium (Ti), zirconium (Zr), tin (Sn), vanadium (V), niobium (Nb), tantalum (Ta) and hafnium (Hf) or being a combination of these metals, 15 to 45% of a metallic phase (1) comprising at least one alloy of nickel and copper.
-
-
-
-
-
-
-
-
-