Abstract:
The present invention provides a unitary run flat tire (RFT) reinforcement that is formed into a relatively rigid shape. The reinforcement is insertable into a mold for an RFT support and can maintain the needed structural rigidity for such insertion. Further, the invention provides an RFT support that is molded and includes the RFT reinforcement. The invention also provides a wheel assembly including a tire, a rim, and an RFT support between the rim and the tire, where the support includes the RFT reinforcement. The RFT support can have a colored indicator formed or subsequently applied thereto to indicate one or more attributes of the support.
Abstract:
An apparatus and method for nonextrusion manufacturing of catheters that can be used to produce catheters having a simple or complex configuration. A polymer material in a particulate preform is applied in a layer over an outer surface of a core member. By applying the polymer material in a particulate preform, a composition of the polymer material can be varied continuously as it is being applied to provide a variable hardness over the length of the catheter. A fibrous reinforcement can be used having a constant or variable pitch and a constant or variable number of fibers and fiber types. Sensors can be easily placed in a wall of the catheter as the catheter is being fabricated, thereby allowing more sensors to be used without placing conductors in the lumen of the catheter. Deflection passages can be provided in a wall of the catheter for inserting a wire to deflect the catheter. The polymer material can be heated into molten form as it is being applied, or the core mandrel or liner can be heated to cause the polymer material to consolidate upon impact. A mandrel in the preferred embodiment is rotated about its longitudinal axis while a spray head and filament winding head traverse the length of the mandrel and apply polymer material and filament, respectively. Other arrangements can also be used, including a spray head and filament winding head that rotate about a continuous core mandrel, and a fluidized bed or other container into which a heated core mandrel is immersed. A plurality of mandrels can be placed side-by-side to form a multiple lumen tubing.
Abstract:
Apparatus for the production and proper calibration of improved flexible hoses made by a soft thermoplastic material reinforced with a continuous spiral of rigid thermoplastic material. During their production the hoses do not rotate but are produced linearly and in their internal surface no longitudinal grooves are engraved. The melted coaxial materials are discharged through a rotating mechanism to a calibration unit which rotates with it and bears peripherally special inclined rollers on which is transmitted, via an epicyclic gearing system, a controlled rotation opposite to the above direction. On this calibration unit the plastic hose is formed successively, advancing linearly forward.
Abstract:
This disclosure relates to a hose including a tube and a braided wire reinforcement covering the tube. The wire braid includes a plurality of interwoven strands of wires, and each strand includes a plurality of wires having a uniform tension and a twist of from approximately one turn for each two and one-half to three inches. Further, each of the wires of the strand is preformed to produce a helical tension spring configuration, and the strands are braided under a relatively high tension. The hose is made by a method including the steps of preformng wires to produce the helical tension spring configuration, combining a plurality of such wires under a uniform tension and twisting such wires to form strands, and braiding a plurality of such strands under high tension.
Abstract:
Method and apparatus for producing a liner hose (30) for lining channels and pipes, comprising a circumferentially closed inner film hose (32) and at least on fibrous strip (34) wound onto the inner film hose (32) and impregnated with a curable reaction resin, wherein the inner film hose (32) is drawn in a winding apparatus (40) onto a support tube (8) which is mounted on one side and arranged substantially horizontally, at the free end (10) of which a winding mandrel (12) is arranged having a transport apparatus (16) which, during the circumferential winding of the fiber strips (34), transports the inner film hose (32) in a feed direction (36) to a stationary supporting surface (18) which is arranged at the free end (10) of the winding mandrel (12) and over which the liner hose (30) is conveyed further, wherein the inner film hose (32) is drawn over the free end (13) of the winding mandrel (12) onto the support tube (8) against the feed direction (36).
Abstract:
A breathing circuit component includes an inlet, an outlet and an enclosing wall. The enclosing wall defines a gases passageway between the inlet and the outlet. At least a region of the enclosing wall is formed from a breathable material that allows the passage of water vapor without allowing the passage of liquid water or respiratory gases. The breathing circuit component is the expiratory limb of a breathing circuit.
Abstract:
A guide wheel (26) for fitting a layer of carbon armor wires around a tubular core (24). The guide wheel (26) has a central cavity (32), an internal circular edge (34), and a peripheral circular edge (38) that extends coaxially at a distance from said internal circular edge (34), the guide wheel (26) includes a plurality of guiding devices (46), each of which is capable of guiding in translation a plurality of carbon armor wires, the guiding devices being mounted around said central cavity (32). The guiding device (46) includes a peripheral redirecting member (50) in order to be able to guide the carbon armor wires to the internal circular edge (34), and a central redirecting member (52) in order to be able to guide said carbon armor wires through a second curved passageway.
Abstract:
A method is disclosed for winding a composite strip onto a spool having a hub in which the strip includes a plurality of laterally spaced apart lengthwise extending rib portions upstanding from the base portion. The method comprises the steps of feeding the strip towards the hub of the spool; driving the fed strip through a roller set so as to plastically deform the strip to give it a curved base portion; and winding the deformed strip onto the hub to form spooled strip, the winding creating tension in the strip. The plastic deformation of the strip through the roller set substantially reduces the tension in the strip that would otherwise occur.
Abstract:
A method of forming a homogenous composite pipe of unspecified length from strips of fiber reinforced thermoplastic material is disclosed. A mandrel is arranged stationary in a process direction to extend freely from a first supported end to a second end. A slip-sheath is applied about the mandrel. The thermoplastic material strips are wound about the slip-sheath. A section of the thermoplastic material strip winding is consolidated. The slip-sheath is formed from tape material which is applied longitudinally onto the mandrel surface. The slip-sheath is connected to a puller arranged downstream of the mandrel in the process direction. Consolidated pipe sections are pulled off from the second end of the mandrel in synchronization with the winding and consolidation. An assembly for carrying out the method.