摘要:
Disclosed is a suspension control apparatus for a vehicle having a plurality of suspension units each disposed between a road wheel and the body of a vehicle for effectively and quickly correcting any deviation of the vehicle height from a normal height level immediately upon finishing of active suspension control operations. Priority is determined for vehicle-height control and various active suspension control operations such as roll control, nose-dive and squat control, and pitching and bouncing control so that normal vehicle-height control is stopped or inhibited during active suspension control operations are being carried out, thereby preventing the traveling attitude of the vehicle from being made unstable. Also, a vehicle-height control determining time interval from the instant when active suspension control operations has been finished until the time when vehicle-height control is restarted is substantially reduced as compared with that required in the case when the vehicle is traveling in a normal attitude without any active suspension control operation, whereby any deviation of the vehicle height from a target height level can be quickly removed to make the actual vehicle height match with a target height level in a very short time immediately after the finishing of the active suspension control operations.
摘要:
An automatic tilting vehicle comprises left and right front wheels and a rear wheel. A control unit controls a vehicle tilting device so that the tilt angle of the vehicle becomes the target tilt angle. The control device is configured to swingingly vibrates the vehicle in the lateral direction by tilting the vehicle by the vehicle tilting device, to estimate a height of the center of gravity of the vehicle based on a resonance period of swinging vibration of the vehicle, and to correct the target tilt angle such that a perpendicular passing through the estimated center of gravity passes within a range of a triangle formed by connecting grounding points of the left and right front wheels and a grounding point of the rear wheel.
摘要:
An electronic control suspension apparatus for controlling a damping force of a damper installed at each of a front wheel and a rear wheel includes: a reception unit configured to receive a vehicle manipulation signal; a driver tendency analysis unit configured to calculate a driver tendency analysis value by analyzing a driver's driving tendency based on the vehicle manipulation signal received by the reception unit; a driver mode determination unit configured to determine a driver mode to which the driver tendency analysis value calculated by the driver tendency analysis unit belongs; and a damping force control unit configured to control the damping force of the damper by changing a current value to be applied to a solenoid valve according to the determined driver mode.
摘要:
A damper control device includes a pitching angular velocity detection unit that detects a pitching angular velocity of a vehicle body, a front wheel side pressure detection unit that detects a pressure of a compression side chamber in a front wheel side damper, and a rear wheel side pressure detection unit that detects a pressure of a compression side chamber in a rear wheel side damper. The damper control device controls the pressure of the compression side chamber in the front wheel side damper and the pressure of the compression side chamber in the rear wheel side damper based on the pitching angular velocity, the pressure of the compression side chamber in the front wheel side damper and the pressure of the compression side chamber in the rear wheel side damper.
摘要:
A method and a system generates signals for influencing the movement of the body of a vehicle, wherein the chain of movements of which can be controlled or adjusted. The movement of the vehicle body is determined by sensors in relation to at least three wheels of the motor vehicle and the vertical acceleration of the vehicle body, the sensor signals that correspond to the determined sensor values are fed to a shock absorber controller which delivers at least one control signal to control actuators, in particular semi-active or active shock absorbers which are used to influence the movement of the body. The control signal for controlling the actuators is determined by the shock absorber controller from the sensor signals, with the aid of condition-dependent adjustment algorithms, taking into consideration current and/or expected conditions in conjunction with selectable requirements for the movement of the vehicle body and driving safety requirements.
摘要:
A method and device for roll stabilization of a motor vehicle are provided. On the basis of a measured transverse acceleration or a calculated transverse acceleration of the motor vehicle, actuating signals are generated for actuators which are associated with a front axle and a rear axle of the motor vehicle and which provide support torques on the front axle and/or on the rear axle for roll stabilization. To ensure a satisfactory self-steering effect of the motor vehicle, a torque distribution between the support torque provided on the front axle and the support torque provided on the rear axle is modified on the basis of a first signal which allows conclusions to be drawn concerning the actuation of a gas pedal, and/or on the basis of a second signal which allows conclusions to be drawn concerning the actuation of a brake pedal.
摘要:
The present invention includes a hydraulic brake device 4, 5 that generates a braking force corresponding to an operation of a brake pedal 1 performed while the vehicle is traveling, a brake lock means 6 for applying a hydraulic lock on the hydraulic brake device 4, 5 and releasing the hydraulic lock, a brake pedal operation detection means 22 for detecting an operation of the brake pedal 1, and a control means 10 for controlling the brake lock means 6 so as to apply the hydraulic lock on the hydraulic brake device 4, 5 upon detecting via the brake pedal operation detection means 22 a predetermined depressing operation of the brake pedal 1.
摘要:
A control system (11) for a vehicle (10) includes vehicle dynamics sensors (35-47) providing a vehicle dynamics signal. Tire monitoring system sensors (20) in each wheel generate tire signals including temperature, pressure and acceleration data. A controller (26) communicates with the tire monitoring system sensors (20) and at least one vehicle dynamics sensor, and generates a suspension value as a function of the multi-axis acceleration data of the tire signals. The suspension value is transmitted to a suspension control system (33) to adjust the vehicle suspension characteristics in response to the suspension value.
摘要:
The present invention includes a hydraulic brake device 4, 5 that generates a braking force corresponding to an operation of a brake pedal 1 performed while the vehicle is traveling, a brake lock means 6 for applying a hydraulic lock on the hydraulic brake device 4, 5 and releasing the hydraulic lock, a brake pedal operation detection means 22 for detecting an operation of the brake pedal 1, and a control means 10 for controlling the brake lock means 6 so as to apply the hydraulic lock on the hydraulic brake device 4, 5 upon detecting via the brake pedal operation detection means 22 a predetermined depressing operation of the brake pedal 1.
摘要:
A procedure is described for control and regulation of the dynamic-drive of a vehicle according to a set nominal value for the vehicle components affecting the dynamic-drive. The nominal value is set according to a driver's wish setting and with reference to a vehicle pattern stored in a control device. The measurable forces acting upon the vehicle are regulated and a controlled distribution of the longitudinal and lateral forces acting upon the tires of the vehicle is carried out among the tires.