Abstract:
A monolithic micro or nano electromechanical transducer device includes a pair of substrates (20, 25) respectively mounting one or more elongate electrical conductors (40) and resilient solid state hinge means (30, 32) integral with and linking the substrates to relatively locate the substrates so that respective elongate electrical conductors (40) of the substrates are opposed at a spacing that permits a detectable quantum tunnelling current between the conductors when a suitable electrical potential difference is applied across the conductors. The solid state hinge means permits relative parallel translation of the substrates transverse to the elongate electrical conductors.
Abstract:
A MEM vibration sensor includes a substrate and a sensing-device. The substrate includes a first supporting-portion and a cavity. The sensing-device includes a first sensing-unit, a second sensing-unit, a first metal pad and a second metal pad. The first sensing-unit includes a second supporting-portion and a vibrating-portion. The second supporting-portion is located on the first supporting-portion and is connected to the first supporting-portion via a first dielectric material. The vibrating-portion is located on the cavity, and is connected with the second supporting-portion through an elastic connecting-portion. The second sensing-unit is located on the first sensing-unit and includes a sensing-portion and a third supporting-portion. The sensing-portion is located on the vibrating-portion and has a gap with the vibrating-portion. The third supporting-portion is located on the second supporting-portion, is connected to the sensing-portion, and is connected to the second supporting-portion through a second dielectric material.
Abstract:
A semiconductor device has a deformable membrane, e.g., for the measurement of at least one of an acceleration, a vibration, or a pressure. The membrane has a supporting connection with a support structure which includes at least one elastic supporting connection. Also disclosed are a sensor device including the semiconductor device along with methods for manufacturing the semiconductor device and the sensor device.
Abstract:
A semiconductor device for use in a sensor device has a deformable membrane for the measurement of an acceleration, a vibration, or a pressure. The semiconductor device includes a deformable membrane having a membrane border; a structure holding the deformable membrane in correspondence of the membrane border; at least one electric contact to obtain an electric signal indicative of deformation of the deformable membrane; and mass elements suspended from the membrane.
Abstract:
The present disclosure provides a bone-conduction sensor assembly. The bone-conduction sensor assembly includes a housing, a printed circuit board assembly forming a first receiving cavity together with the housing, a diaphragm accommodated in the first receiving cavity, a MEMS die and an ASIC chip mounted on the printed circuit board assembly. The MEMS die electrically connects to the ASIC chip through a bonding wire. A first weight is located on a surface of the diaphragm facing to the printed circuit board assembly. A position of the first weight has an avoiding portion corresponding to the bonding wire.
Abstract:
A MEMS vibration sensor includes a membrane having an inertial mass, the membrane being affixed to a holder of the MEMS vibration sensor; and a segmented backplate spaced apart from the membrane, the segmented backplate being affixed to the holder.
Abstract:
Techniques, systems, and devices are described for implementing for implementing computation devices and artificial neurons based on nanoelectromechanical (NEMS) systems. In one aspect, a nanoelectromechanical system (NEMS) based computing element includes: a substrate; two electrodes configured as a first beam structure and a second beam structure positioned in close proximity with each other without contact, wherein the first beam structure is fixed to the substrate and the second beam structure is attached to the substrate while being free to bend under electrostatic force. The first beam structure is kept at a constant voltage while the other voltage varies based on an input signal applied to the NEMS based computing element.
Abstract:
Bulk acoustic wave filters and/or bulk acoustic resonators integrated with CMOS devices, methods of manufacture and design structure are provided. The method includes forming a single crystalline beam from a silicon layer on an insulator. The method further includes providing a coating of insulator material over the single crystalline beam. The method further includes forming a via through the insulator material exposing a wafer underlying the insulator. The insulator material remains over the single crystalline beam. The method further includes providing a sacrificial material in the via and over the insulator material. The method further includes providing a lid on the sacrificial material. The method further includes venting, through the lid, the sacrificial material and a portion of the wafer under the single crystalline beam to form an upper cavity above the single crystalline beam and a lower cavity in the wafer, below the single crystalline beam.
Abstract:
A physical quantity sensor includes a sensor portion, a casing, and a vibration isolator. The casing includes a supporting portion with a supporting surface that is located to face an end surface of the sensor portion. The vibration isolator is located between the end surface of the sensor portion and the supporting surface of the casing to join the sensor portion to the casing. The vibration isolator reduces a relative vibration between the sensor portion and the casing.
Abstract:
A semiconductor dynamic quantity sensor has a substrate including a semiconductor substrate, an insulation layer on a main surface of the semiconductor substrate, and a semiconductor layer on the insulation layer. The main surface has a projection that is trapezoidal or triangular in cross section. The semiconductor layer is divided by a through hole into a movable portion. A tip of the projection is located directly below the movable portion and spaced from the movable portion by a predetermined distance in a thickness direction of the substrate. A width of the tip of the projection is less than a width of the movable portion in a planar direction of the substrate. The distance between the tip of the projection and the movable portion is equal to a thickness of the insulation layer.