Abstract:
The invention relates to a photocathode having a structure that permits a decrease in the radiant sensitivity at low temperatures is suppressed so that the S/N ratio is improved. In the photocathode, a light absorbing layer is formed on the upper layer of a substrate. An electron emitting layer is formed on the upper layer of the light absorbing layer. A contact layer having a striped-shape is formed on the upper layer of the electron emitting layer. A surface electrode composed of metal is formed on the surface of the contact layer. The interval between bars in the contact layer is adjusted so as to become 0.2 nullm or more but 2 nullm or less.
Abstract:
The present invention related to miniaturized x-ray tubes, that enable radiation treatment by locating the x-ray source within a human body in close vicinity to or inside of the area to be treated with X-rays. Advantageously, the present invention eliminates most of the problems related to the methods based on a radioactive source and offers a method for efficient and controllable radiation treatment.
Abstract:
A photo-cathode electron source suitable for use in flat panel displays has an extractor grid means (104) maintained, in use, at a positive potential with respect to the photo-cathode surface. The extractor grid may be used as a carrier for unfired photoemissive material which forms the emission surface of the photo-cathode. The material is deposited on the surface (103) of the photo-cathode means (102) by means of evaporation from the extractor grid (104).
Abstract:
MUX and DEMUX circuits using a photo gate transistor having a pair of thin film electrodes respectively serving as emission and collector electrodes. When photons with at least critical energy are irradiated onto the emission electrode, electrons are emitted from the emission electrode, so that the associated photo gate transistor can carry out a gating operation. The MUX circuit divides a plurality of electrical signals in a time division manner so that the transmission of those signals can be carried out through a single transmission line. The DEMUX circuit recovers an original signal from signals transmitted in a time division manner via a single transmission line. Input signals are received to emission electrodes while being limited in voltage level by input resistor pairs. An optical source irradiates photons to an emission electrode in sync with the application of an input signal. By the irradiation of photons, the emission electrode emits electrons which are transmitted to a collector electrode. As a result, output voltage is output. The output voltage corresponds to the quantity of current of the transmitted signal which is determined by an output resistor in accordance with voltage from a voltage source and the intensity of the irradiated photons.
Abstract:
The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.
Abstract:
A system for generating an electron beam array, comprising a light source, a first substrate having a plurality of plasmonic lenses mounted thereon, the plasmonic lenses configured to received light from the light source and produce an electron emission, and a plurality of electrostatic microlenses configured to focus the electron emissions into a beam for focusing on a wafer substrate. A light source modulator and digital micro mirror may be included which captures light from the light source and projects light beamlets on the plasmonic lenses.
Abstract:
A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.
Abstract:
The present invention is directed to an x-ray source for irradiating a surface defining a body cavity in accordance with a predetermined dose distribution. The source comprises a housing, an elongated tubular probe, a target assembly, and an inflatable balloon. The housing encloses an electron beam source and includes elements for generating an electron beam along a beam path. The tubular probe extends along a central axis from the housing about the beam path. The target assembly extends along the central axis and is coupled to the end of the probe distal from the housing. The target assembly includes a target element is positioned in the beam path. The target element is adapted to emit x-rays in response to electrons incident thereon from the beam. The probe tip assembly and associated control electronics include elements for positioning the target element in the beam path, and is substantially x-ray transparent. The balloon is affixed to the distal end of the probe and is inflatable so that when that probe end is inserted into a body cavity, the balloon may be inflated to stretch the cavity to a known shape. Positioning the probe tip inside the inflated balloon allows delivery of a uniform, or other desired, dose of radiation to the surface defining a body cavity.
Abstract:
An electron generating assembly for an x-ray tube has a thermionic cathode and an electrode system for accelerating electrons emitted by the thermionic cathode, and an electron multiplier disposed in the electron path. In order to achieve a given electron beam density, the electron beam current emitted by the cathode can be reduced dependent on the multiplication factor of the electron multiplier, thereby extending the service life of the overall assembly. The electron multiplier can be controllable.
Abstract:
A miniature flat panel image intensifier display tube having an array of ctrically isolated parallel photocathode array stripes adjacent and orthogonal to a microchannel plate input electrode array comprising electrically isolated parallel metallic stripes. A video picture signal generator modulates a radiation source that causes a generally uniform flow of photons to impinge on the photocathode array. The photoelectrons that are emitted from the photocathode array are selectively accelerated into a charge pattern according to differential voltages scanned across both arrays by array switching electronic means wherein the charge pattern is converted to a visible image for viewing by an observer.