Abstract:
A semiconductor trimming circuit includes parallel coupled PMOS devices coupled in parallel with parallel coupled NMOS devices and an additional pair of dummy NMOS devices. The dummy NMOS devices are coupled in parallel with the NMOS devices. A trimming circuit for an internal clock source may be formed with an array of such switches for selecting one or more trimming capacitors of the trimming circuit. Such an array has a low leakage current and permits good trimming linearity.
Abstract:
A circuit for a voltage controlled oscillator has a bridge structure including two cross-coupled N-type transistors and two cross-coupled P-type transistors. A current mirror is coupled to the two N-type cross-coupled transistors and configured to generate a bias current. An LC resonator is coupled in parallel between the two cross-coupled N-type transistors and the two P-type cross-coupled transistors. The LC resonator includes two pairs of differential inductors mutually coupled by a mutual inductance coefficient, each pair comprising a first inductor arranged on a respective branch of an external loop, and a second inductor arranged on a respective branch of an internal loop. A first varactor is coupled to a common node and a first branch of the internal loop. A second varactor is coupled to the common node and the second branch of the internal loop.
Abstract:
An integrated circuit includes a delay lock loop (DLL) circuit that generates incremental delay line signals and a delay line output signal based on a received clock signal. A pulse-width modulation (PWM) control module generates a PWM control signal. A tunable circuit having variable capacitance is controlled based on the delay line output signal, the PWM control signal, and one of the incremental delay line signals.
Abstract:
A fully integrated, programmable mixed-signal radio transceiver comprising a radio frequency integrated circuit (RFIC) which is frequency and protocol agnostic with digital inputs and outputs, the radio transceiver being programmable and configurable for multiple radio frequency bands and standards and being capable of connecting to many networks and service providers. The RFIC includes a tunable resonant circuit that includes a transmission line having an inductance, a plurality of switchable capacitors configured to be switched into and out of the tunable resonant circuit in response to a first control signal, and at least one variable capacitor that can be varied in response to a second control signal, wherein a center resonant frequency of the resonant circuit is electronically tunable responsive to the first and second control signals that control a first capacitance value of the plurality of switchable capacitors and a second capacitance value of the at least one variable capacitor.
Abstract:
The invention concerns the adjustment of an oscillation frequency of an oscillator, in particular the digital coarse adjustment of a PLL oscillator by means of a circuit arrangement comprising at least one pair of capacitors (C, C′), of which first terminals are connected with the oscillator, and second terminals can selectively be connected by means of a switching arrangement with a first reference potential (vss), in order to incorporate the capacitor pair (C, C′) into an oscillating circuit of the oscillator, wherein the circuit arrangement comprises: first FETs (T1, T1′) for the respective connection of the second terminals with the first reference potential (vss), a second FET (T2) for the connection of the second terminals with each other, and third FETs (T3, T3′) for the respective connection of the second terminals with a second reference potential (vdd), which differs from the first reference potential (vss).
Abstract:
Improved voltage controlled oscillator (VCO) circuits are disclosed. A symmetrical voltage controlled oscillator (VCO) system according to the embodiments of the present invention comprises a frequency tuning circuit containing one or more varactors for receiving a predetermined tuning signal and a frequency tuning bias signal for altering capacitances of the varactors, a modulation circuit coupled in parallel with the frequency tuning circuit containing one or more varactors for modulating one or more outputs, and a core circuit coupled in a parallel with the tuning circuit and the modulation circuit for providing an oscillation mechanism, wherein the core circuit has an inductance module coupled in a parallel fashion with the frequency tuning circuit and the modulation circuit, wherein circuit elements of the VCO system are symmetrically arranged for increasing oscillation efficiency thereof and the varactors are tuned to deliver the output at an output frequency.
Abstract:
A circuit reducing the capacitance of a switched capacitor array by mitigating switch capacitance. Reducing the effect of switch capacitance increases the frequency range of an inductor-capacitor tank containing the switched capacitor array. A pull-up circuit is coupled between a voltage source and a node. A switched capacitor and a switch are coupled to the node. The pull-up circuit biases the switch to reduce switch junction capacitance when the switch is off. In an example, a pull-up resistor is coupled between the node and a voltage source to bias the switch. In another example, a pull-up switch and pull-up resistor are coupled between the node and a voltage source to bias the switch.
Abstract:
A programmable capacitor array does not require separate switching transistors because the capacitors themselves have a switchable capacitance, which capacitors are made in the manner of regular N channel transistors with their source/drains connected to each other. When a logic low is applied to the gate, the capacitance is relatively low and the capacitance is what is commonly called parasitic capacitance. The capacitance increases significantly when a logic high is applied to the gate because the logic high has the effect of inverting the channel. Thus, the capacitor array is made of transistors that themselves have switchable capacitance operated so that no separate switching transistors are required. This allows for construction of an array of unit capacitors to achieve monotonic operation and good linearity using conventional manufacturing of N channel transistors while achieving significant area savings and reduced power consumption.
Abstract:
A voltage-controlled oscillator includes (i) a first variable-capacity element, (ii) a resonance circuit whose resonance frequency changes in accordance with a control voltage applied to the first variable-capacity element, (iii) a second variable-capacity element connected in parallel with the first variable-capacity element, (iv) resonance frequency range switching means which switches the variation range of the resonance frequency of the resonance circuit by switching the capacity of the second variable-capacity element, and (v) a resonance frequency correction circuit which corrects the resonance frequency in such a manner as to prevent the ratio between resonance frequencies before and after the switching of the variation range from depending on the control voltage.
Abstract:
A controlled oscillator circuit includes an amplifier including a first transistor coupled between a first node and a reference node, and a second transistor coupled between a second node and the reference node. The gate of first transistor and the gate of the second transistor may be cross-coupled. The oscillator may also include one or more variable capacitance circuits coupled between the first node and the second node, each including a first capacitor coupled between the first node and a third node, and a second capacitor coupled between the second node and a fourth node. Each variable capacitance circuit may also include a third, a fourth and a fifth transistor interconnected to selectively couple the first and second capacitors to the reference node. The third, fourth and fifth transistors may be low voltage transistors and the first and the second transistors may be high voltage transistors.