Abstract:
The separation of single-walled carbon nanotubes (SWNTs), by electronic type using centrifugation of compositions of SWNTs and surface active block copolymers in density gradient media.
Abstract:
A method for dispersing nanotubes, comprising forming a nanocomposite solution with associated nanotubes and nanoplatelets, mixing a surfactant to the nanocomposite solution, separating the nanocomposite in solution, wherein the nanotubes remain suspended in the surfactant solution, and isolating the nanotubes in solution. In certain instances, the method further comprises functionalizing the nanotubes in solution.
Abstract:
A nanosensor for detecting molecule characteristics includes a membrane having an opening configured to permit a charged carbon nanotube to pass but to block a molecule attached to the carbon nanotube. The opening is filled with an electrolytic solution. An electric field generator is configured to generate an electric field relative to the opening to drive the charged carbon nanotubes through the opening. A sensor circuit is coupled to the electric field generator to sense current changes due to charged carbon nanotubes passing into the opening, and to bias the electric field generator to determine a critical voltage related to a force of separation between the carbon nanotube and the molecule.
Abstract:
Methods are provided for forming a nanostructure array. An example method includes providing a first layer, providing nanostructures dispersed in a solution comprising a liquid form of a spin-on-dielectric, wherein the nanostructures comprise a silsesquioxane ligand coating, disposing the solution on the first layer, whereby the nanostructures form a monolayer array on the first layer, and curing the liquid form of the spin-on-dielectric to provide a solid form of the spin-on-dielectric. Numerous other aspects are provided.
Abstract:
A method for moving high aspect ratio molecular structures (HARMS), which method comprises applying a force upon a dispersion comprising one or more bundled and individual HARM-structures, wherein the force moves the bundled and/or the individual HARM-structure based on one or more physical features and/or properties for substantially separating the bundled and individual HARM-structures from each other.
Abstract:
A method of enriching specific species of carbon nanotubes by exposing a composition of carbon nanotubes to an azo compound is provided. The method includes a) mixing the azo compound with a suspension comprising the composition of carbon nanotubes to form a mixture; b) incubating the mixture to react the azo compound with the carbon nanotubes; and c) separating a supernatant and a precipitate formed in the mixture. An electrode and a field-effect transistor comprising a single-walled carbon nanotube species enriched using the method are also provided.
Abstract:
A method of preparing graphene sheets. The method includes: immersing a portion of a first electrode and a portion of a second electrode in a solution containing an acid, an anionic surfactant, a salt, an oxidizing agent, or any combination thereof as an electrolyte, the immersed portion of the first electrode including a first carbon material and the immersed portion of the second electrode including a second carbon material or a metal; causing a potential to exist between the first and second electrodes; and recovering, from the solution, graphene sheets exfoliated from the carbon material(s). Also disclosed is a method of preparing a graphene film electrode. The method includes: dissolving graphene sheets in an organic solvent to form a solution, applying the solution on a substrate, adding deionized water to the solution on the substrate so that a graphene film is formed, and drying the graphene film.
Abstract:
The present teachings provide, in part, methods of separating two-dimensional nanomaterials by atomic layer thickness. In certain embodiments, the present teachings provide methods of generating graphene nanomaterials having a controlled number of atomic layer(s).
Abstract:
A process of sorting metallic single wall carbon nanotubes (SWNTs) from semiconducting types by disposing the SWNTs in a dilute fluid, exposing the SWNTs to a dipole-inducing magnetic field which induces magnetic dipoles in the SWNTs so that a strength of a dipole depends on a conductivity of the SWNT containing the dipole, orienting the metallic SWNTs, and exposing the SWNTs to a magnetic field with a spatial gradient so that the oriented metallic SWNTs drift in the magnetic field gradient and thereby becomes spatially separated from the semiconducting SWNTs. An apparatus for the process of sorting SWNTs is disclosed.
Abstract:
Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.