摘要:
A method of manufacturing a porous monolithic zeolite structure including the steps of; taking a porous monolithic substrate; forming one or more zeolites on the substrate; and substantially or completely removing the substrate.
摘要:
The present invention concerns Y-type FAU zeolites with hierarchical porosity having an Si/Al atomic ratio strictly greater than 1.4 and less than or equal to 6, having controlled and optimised crystallinity, and having mesoporosity such that the mesoporous outer surface area is between 40 m2·g−1 and 400 m2·g−1. The present invention also concerns the method for preparing said Y-type FAU zeolites with hierarchical porosity.
摘要:
The present invention relates to zeolite materials in the form of agglomerates comprising at least one mesoporous Faujasite zeolite with an Si/Al ratio which is strictly greater than 1.4 and having both the characteristics of mesoporous zeolites, the properties associated with microporosity and the mechanical properties of zeolite agglomerates without mesoporous zeolite.The invention also relates to the process for preparing the said zeolite materials in the form of agglomerates.
摘要:
A preparation method for modified molecular sieve and a modified molecular sieve-containing catalytic cracking catalyst. The preparation method comprises: mixing molecular sieve slurry, a compound solution containing ions of group IIIB metals of the periodic table of elements, organic complexing agent and/or dispersing agent and precipitating agent to obtain mixed slurry containing molecular sieve and precipitates of group IIIB elements in the periodic table of elements; and drying, and roasting or not roasting to obtain molecular sieve modified by the group IIIB elements. A weight ratio of group IIIB elements calculated based on oxides to molecular sieve dry basis is equal to (0.3-10):100, a molar ratio of organic complexing agent to ions of group IIIB metals is equal to (0.3-10):1, and a molar ratio of dispersing agent to the ions of group IIIB metals is equal to (0.2-16):1. Also related to is the catalytic cracking catalyst containing the modified molecular sieve prepared according to the method. The molecular sieve prepared by the method or the catalytic cracking catalyst containing same has good activity stability and heavy metal pollution resistance.
摘要:
The present invention relates to a new process for synthesising the silicoaluminate form of the AEI zeolite structure based on the use of another zeolite, zeolite Y, as the only source of silicon and aluminum, in order to obtain high synthesis yields (greater than 80%) in the absence of any other source of silicon, phosphine-derivedcationsand fluoride anions in the synthesis medium. The N,N-dimethyl-3,5-dimethylpiperidinium cation may be used as the OSDA, and the FAU crystal structure is transformed into the AEI crystal structure with high yields. It also discloses the preparation of catalysts based on the silicoaluminate form of the AEI crystal structure, wherein Cu atoms have been introduced, and the subsequent application thereof as a catalyst, preferably in the SCR of NOx.
摘要:
The invention relates to a Y-type zeolite having a modified faujasite structure, the intracrystalline structure of which includes at least one network of micropores, at least one network of small mesopores having an average diameter ranging from 2 to 5 nm, and at least one network of large mesopores having an average diameter range from 10 to 50 nm. The invention also relates to particles including such zeolites and to the use thereof in a method for processing crude oil, particularly as a hydrocracking catalyst.
摘要:
A method for synthesis of porous inorganic materials, preparation of a catalyst and catalytic cracking of petroleum hydrocarbons thereof includes processes for synthesis of porous inorganic materials and preparation of the catalytic cracking catalyst and catalytic cracking of petroleum hydrocarbons. The synthesis process is advantaged in low cost in raw materials; the porous inorganic material has various pore structures; and transitional metal used overcomes the defects of the catalytic properties. The porous inorganic material serving as the main active ingredient and containing crystalline aluminum silicate zeolite structures provides surface acidity required by the catalytic reaction. The surface acidity is flexibly adjusted. The hierarchical pore profile improves the accessibility of the active center of the zeolite structure and favors the reaction efficiency and benefits of the petroleum hydrocarbon cracking, and reduces the negative effects caused by diffusion limit. The catalyst containing the porous inorganic material has low manufacturing cost and better properties.
摘要:
Provided is a phosphorus-containing ultrastable Y-type rare earth (RE) molecular sieve and the preparation method thereof. The method is: based on Na Y molecular sieve as a raw material, obtaining “one-exchange one-roast” RE-Na Y-type molecular sieve through the steps of exchanging with RE, pre-exchanging with dispersing, and the first calcination; and then performing ammonium salt exchange, phosphorus modification, and the second calcination on the “one-exchange one-roast” RE-Na Y-type molecular sieve, wherein the sequence of the RE exchange and the pre-exchange with dispersing is unlimited, and the sequence of the ammonium salt exchange and the phosphorus modification is unlimited as well. The obtained molecular sieve contains RE oxide 1-20 wt %, phosphorus 0.1-5 wt %, and sodium oxide no more than 1.2 wt %, and has a crystallization degree of 51-69% and a lattice parameter of 2.449-2.469 nm. Heavy oil conversion rate can be increased by using the molecular sieve as an active component in a catalytic cracking catalyst.
摘要:
A suite of polymer/zeolite nanocomposite membranes. The polymer backbone is preferably a film forming fluorinated sulfonic acid containing copolymer, such as a Teflon type polymer, a perfluorinated polymer, or a perfluorinated polymer with sulfonic groups. The zeolites formed in accordance with the present invention and which are used in the membranes are plain, phenethyl functionalized and acid functionalized zeolite FAU(Y) and BEA nanocrystals. The zeolite nanocrystals are incorporated into polymer matrices for membrane separation applications like gas separations, and in polymer-exchange-membrane fuel cells. For the purpose of developing zeolite-polymer nanocomposite membranes, the zeolite nanocrystals are size-adjustable to match the polymer-network dimensions.
摘要:
A suite of polymer/zeolite nanocomposite membranes. The polymer backbone is preferably a film forming fluorinated sulfonic acid containing copolymer, such as a Teflon type polymer, a perfluorinated polymer, or a perfluorinated polymer with sulfonic groups. The zeolites formed in accordance with the present invention and which are used in the membranes are plain, phenethyl functionalized and acid functionalized zeolite FAU(Y) and BEA nonocrystals. The zeolite nanocrystals are incorporated into polymer matrices for membrane separation applications like gas separations, and in polymer-exchange-membrane fuel cells. For the purpose of developing zeolite-polymer nanocomposite membranes, the zeolite nanocrystals are size-adjustable to match the polymer-network dimensions.