Abstract:
Electrodes for establishing an electrostatic field to influence focus and deflection of an electron beam in a light valve have their surfaces which are exposed to the beam coated with chemically active, electrically conductive, sorbent materials in order to immediately sorb vapors which condense thereon. The electrodes are thus maintained uniformly conductive, precluding spurious charge buildup and facilitating precise control of the beam.
Abstract:
A magnetically microfocused electron emission source apparatus is disclosed. The apparatus may include a magnetic emitter unit, wherein the magnetic emitter unit comprises an emitter. Further, the magnetic emitter unit may include one or more magnetic portions formed from one or more magnetic materials, wherein the one or more magnetic portions of the magnetic emitter unit are configured to generate a magnetic field proximate to a tip of the emitter of the magnetic emitter unit for enhancing focusing of the emitted electrons from the electron emitter.
Abstract:
This invention provides a charged particle source, which comprises an emitter and means of generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
Abstract:
The present invention is an apparatus and multi-unit assembly which is able to achieve two different and highly desirable functions: A focusing of a charged particle beam; and a mass separation of desired ion species from unwanted ion species in traveling ion beams. The apparatus is a simply organized and easily manufactured article; is relatively light-weight and less expensive to make; and is easier to install, align, and operate than conventionally available devices.
Abstract:
An electron source having a cathode and a permanent magnet having perforated channels extending between opposite poles of the magnet. Each channel forms electrons received from the cathode into an electron beam for guidance towards a target. The electron source has applications in a wide range of technologies, including display technology and printer technology.
Abstract:
In accordance with the present invention, there is provided a method of profiling a total vector potential field of a periodic permanent magnetic field structure, wherein desired elements of the total vector potential field are known. The magnetic field structure comprises a plurality of magnets having individual vector potential fields which collectively form the total vector potential field. The method provides for using an electromagnetic solver to generate data files representative of each individual magnet's contribution to the total vector potential field. Such data files are generated by assuming a magnetization value of one unit for a selected magnet, setting magnetization values of zero for all other magnets, setting the electromagnetic solver to use high resolution proximate the selected magnet and to use low resolution elsewhere, using the electromagnetic solver to compute the individual vector potential fields for all space for which the total vector potential field is to be profiled, and repeating such steps for each magnet of the plurality of magnets to generate the data files. The method further provides for using the data files to determine magnetization values for each magnet necessary to provide the desired elements of the total vector potential field, and using the determined magnetization values to superimpose the individual vector potential fields to determine the total vector potential field.
Abstract:
A communication control method in which a communication control unit A.sub.2 in an exclusive communication mode with a communication control unit A.sub.1 receives a requesting frame of an exclusive communication mode or broadcast communication frames from another communication control unit B. Unit B sends a communication frame for announcing an exclusive communication mode after receiving a NAK response from unit A.sub.2, sends message frames after the elapse of a predetermined time T.sub.1, and then sends a frame releasing the exclusive communication mode between Unit B and Unit A.sub.2 after sending the message frames. After receiving the announcing frame from unit B, unit A.sub.2 communicates with unit A.sub.1 to release the exclusive mode between them within the time T.sub.1, enters an exclusive mode with unit B, and then receives communication frames from unit B until it receives the frame of releasing the exclusive mode with unit B. When simultaneous broadcasting frames from unit B are detected, communication control unit A.sub.1, which is in the exclusive communication mode and transmitting message frames to unit A.sub.2, transmits a communication frame for temporarily releasing the exclusive communication mode to unit A.sub.2. The exclusive communication mode between units A.sub.1 and A.sub.2 is revived after unit A.sub.2 receives the casting frames from unit B.
Abstract:
A method for producing various configurations of permanent magnet quadrupoles so that there is no coupling in the two transverse directions when focusing a charged particle beam is provided. Each configuration comprises a plurality of rotatable quadrupole disks, and means for rotating the quadrupole disks with respect to each other in a predetermined relationship.
Abstract:
Apparatus and method for adjusting an ion beam between a mass analyzer and a substrate holder. Herein, one or more bended, such as arch-shaped, curved or zigzag shaped, bar magnets are configured to apply one or more magnetic fields to adjust the shape or cross section of an ion beam passing through a space partially surrounded by the one or more bended bar magnets. At least one of the gap width between neighbor bended bar magnets, the curvature of each bended bar magnet and the current flowing through each bended bar magnet may be fixed or adjusted dependently or independently. Therefore, the Lorentz force applied on the ion beam along different directions may be changed in a desired manner, and then the ion beam may be flexibly elongated, compressed or shaped to meet the process requirement.
Abstract:
A scheme is provided that permits the use of a selectable depacketization module to depacketize data streams. An RTP session manager is responsible for receiving RTP packets from a network and parsing/processing them. A depacketizer module is located using the type of data received on the stream. Thus a specific depacketizer is located at runtime depending on the coding decoding scheme (“codec”) used to compress the incoming data stream. A naming convention is followed in order for a specific depacketizer to be located. The depacketizer receives data that has already been parsed and is in a readable form. The depacketizer outputs this data using a well defined interface. This interface has been designed such that it is generic across a number of codecs. The interface passes all relevant information to the decoder where the actual depacketized data stream will be decompressed. The session manager need not know of any codec details since the depacketizer handles all codec specific issues. A default format is described for data that is output by a depacketizer. There is provision for a depacketizer to output data in this pre-defined format. However, there is also a provision for a depacketizer to output data itself in a pre-defined format. This data is provided to a handler that is aware of this format, so that the integration of depacketizers is seamless. Thus, a depacketizer can be made available as long as it implements certain defined interfaces.