Abstract:
The invention relates to methods and apparatus for forming images on a display utilizing a control matrix to control the movement of MEMs-based light modulators.
Abstract:
A latch circuit which can control a drain avalanche effect and improve reliability is provided. The latch circuit includes an input transistor importing a voltage corresponding to “0” or “1” when the scanning voltage is input to a gate, a storage capacitance storing a voltage imported by the input transistor, and having a first electrode and a second electrode, the first electrode is input with a capacitance control signal and the second electrode is connected to a second electrode of the input transistor, a first conduction type first transistor having a gate connected to the second electrode of the input transistor, a second electrode connected to a first output terminal, and a first electrode input with a first latch control signal, and a second conduction type second transistor having a gate connected to the second electrode of the first transistor, a second electrode connected to a second output terminal, and a first electrode input with a second latch control signal.
Abstract:
A method of operating a display including loading image data to pixels in multiple rows of pixels in an array of pixels during a data loading phase, actuating the pixels in the multiple rows during an update phase, and illuminating at least one lamp during an lamp illumination phase to illuminate the actuated pixels to form an image on the display, in which each of the loading, actuating and illuminating phases partially overlap in time.
Abstract:
Provided is a display device, including: a sealing member including an opening and surrounding a space defined by a pair of light transmissive substrates; an end seal for closing the opening of the sealing member to form an encapsulation space; oil filled in the encapsulation space; a spacer for maintaining an interval between the pair of light transmissive substrates; a shutter; a drive portion arranged in the oil, for mechanically driving the shutter; and a wall portion formed on at least one of opposed surfaces of the pair of light transmissive substrates. The wall portion includes a part arranged at a position interrupting a shortest path between the opening of the sealing member and a display region. The wall portion is made of a material forming the spacer, the shutter, and the drive portion.
Abstract:
This disclosure provides systems, methods and apparatus for enabling a display to have a faster switching rate and an increased aperture ratio by using looped electrical interconnects with a reduced footprint. In one aspect, a display apparatus includes an array of display elements and a high-aspect ratio electrical interconnect connected to at least one display element in the array of display elements, wherein the high-aspect ratio electrical interconnect forms a loop that defines a closed boundary.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying image frames. A smoothing process can be utilized for mitigating image artifacts similar to dynamic false contouring (DFC). In some implementations, were a display to transition from an field specific contributing color (FSCC) having only two component colors to a target FSCC with meaningful intensities of all three component colors, or vice versa, and that target FSCC remained constant over a series of image frames, DFC-like artifacts would be mitigated at the transition by gradually, over a first number of image frames in a series of image frames, reducing the intensities of all component colors of the FSCC to values at or near zero, before gradually increasing the intensities of the component colors included in the target FSCC to their final target values over a remainder of image frames in the series of image frames.
Abstract:
This disclosure provides systems, methods and apparatus utilizing flexures in a display. In some implementations, an electromechanical systems (EMS) device can include flexures that have low stiffness along the axis of motion of a light modulator, and high stiffness in other directions. The flexures may include one or more beams mechanically coupling a MEMS structure to an anchor. The beams may be coupled to a hinge portion, the hinge portion being configured to suppress out of plane motion by the MEMS structure and the flexures. The flexures also may suppress out-of-plane motion using a stiffened portion. The stiffened portion can be mechanically coupled to the hinge portion or at least one beam of the flexure. By varying the cross-section geometry of the stiffened portion, the stiffness of the stiffened portion may be controlled to increase the force required to move the flexure in an out-of-plane direction.
Abstract:
This disclosure provides systems, methods and apparatus for reducing hotspots in backlit displays. Hotspot artifacts in multi-color backlit displays can be reduced by incorporating optical structures along the edges of light guides incorporated into the backlights. The optical structures are positioned adjacent to light emitting modules that emit light into the light guide. Light emitted from the light emitting modules passes through the optical structures before entering the light guide. Hotspot size can be reduced by appropriately configuring the shapes and sizes of these optical structures. In some implementations, the optical structures may include serrations along the side of the light guide adjacent to the light sources. In some other implementations, the optical structures may include dimples. Size of hotspots may also be reduced by reducing the distance between adjacent light sources of the same color.
Abstract:
This disclosure provides systems, methods and apparatus for generating images using dual-shutter shutter assemblies. Such shutter assemblies include two shutters that move over a common aperture to selectively obstruct the passage of light there through. In the closed position, portions of one of the shutters overlaps a portion of the other shutter to provide such light obstruction without the two shutters needing to come into contact.
Abstract:
This disclosure provides systems, methods and apparatus for displaying images. One such apparatus includes a substrate, an elevated aperture layer (EAL) defining a plurality of apertures formed therethrough, a plurality of anchors for supporting the EAL over the substrate and a plurality of display elements positioned between the substrate and the EAL. Each of the display elements may correspond to at least one respective aperture of the plurality of apertures defined by the EAL. Each display element also includes a movable portion supported over the substrate by a corresponding anchor supporting the EAL over the substrate. In some implementations, one or more light dispersion elements may be disposed in optical paths passing through the apertures defined by the EAL.