Abstract:
A semiconductor device with a JFET is disclosed. The semiconductor device includes a trench and a contact embedded layer formed in the trench. A gate wire is connected to the contact embedded layer, so that the gate wire is connected to an embedded gate layer via the contact embedded layer. In this configuration, it is possible to downsize a contact structure between the embedded gate layer and the gate wire.
Abstract:
The present invention relates to the salts of dexlansoprazole in amorphous form. The present invention further relates to processes for the preparation of salts of dexlansoprazole.
Abstract:
A prepolymer system has a monomeric isocyanate content of no greater than about 10% by weight based on 100 parts by weight of the prepolymer system. The prepolymer system comprises a diluent component and a prepolymer component different than and separate from the diluent component. The diluent component has an excess of isocyanate (NCO) functional groups, and comprises the reaction product of a monohydric isocyanate-reactive component and an excess of a first isocyanate component. The first isocyanate component comprises monomeric isocyanates reactive with the monohydric isocyanate-reactive component. The prepolymer component also has an excess of NCO functional groups, and comprises the reaction product of a polyol component and an excess of a second isocyanate component. The prepolymer system can be used to prepare foams via reaction with water. The foams have low density and have excellent adhesion and sound dampening properties for use in cavities of automobile bodies.
Abstract:
Compositions comprise first antioxidants and first additives, such as, a surface additives, performance enhancing additives and lubricant protective additives and optionally second additives and/or second antioxidants. The compositions are useful to improve lubricants, lubricant oils and other lubricant materials. The compositions and methods generally provide longer shelf lives, increased oxidative resistance, improved quality and/or enhanced performance to lubricants or lubricant oils.
Abstract:
Herein are provided derivatized hyperbranched polyglycerols (“dHPGs”). The dHPG comprises a core comprising a hyperbranched polyglycerol derivatized with C1C20 alkyl chains and a shell comprising at least one hydrophilic substituent bound to hydroxyl groups of the core, wherein the hyperbranched polyglycerol comprises from about 1 to about 200 moles of the at least one hydrophilic substituent. The dHPGs are for use as agents for the delivery of a drug or other biologically active moiety to the urinary tract, the digestive tract, the airways, the vaginal cavity and cervix and the peritoneal cavity to treat indications such as cancer, which may be useful in the treatment of or the manufacture of a medicament, in the preparation, of a pharmaceutical composition for the treatment of cancer, as a pre-treatment or co-treatment to improve drug uptake in a tissue. Furthermore, there are provided methods of making dHPGs.
Abstract:
The present invention provides sorafenib ethane sulphonate, process for its preparation, pharmaceutical composition comprising sorafenib ethane sulphonate and its use for the treatment of cancer. Formula (III).
Abstract:
A wide band gap semiconductor device has a transistor cell region, a diode forming region, an electric field relaxation region located between the transistor cell region and the diode forming region, and an outer peripheral region surrounding the transistor cell region and the diode forming region. In the transistor cell region, a junction field effect transistor is disposed. In the diode forming region, a diode is disposed. In the electric field relaxation region, an isolating part is provided. The isolating part includes a trench dividing the transistor cell region and the diode forming region, a first conductivity-type layer disposed on an inner wall of the trench, and a second conductivity-type layer disposed on a surface of the first conductivity-type layer so as to fill the trench. The first conductivity-type layer and the second conductivity-type layer provide a PN junction.
Abstract:
A visual tracking and annotation system for surgical intervention includes an image acquisition and display system arranged to obtain image streams of a surgical region of interest and of a surgical instrument proximate the surgical region of interest and to display acquired images to a user; a tracking system configured to track the surgical instrument relative to the surgical region of interest; a data storage system in communication with the image acquisition and display system and the tracking system; and a data processing system in communication with the data storage system, the image acquisition and display system and the tracking system. The data processing system is configured to annotate images displayed to the user in response to an input signal from the user.
Abstract:
A method for detecting and isolating domain specific faults includes comparing a first media quality report for a communication from a first node with a second media quality report for the communication from a second node. The first node comprises an ingress node of a first domain for the communication and the second node comprises an egress node of the first domain for the communication. The method also includes determining that the difference between at least one aspect of the first media quality report and at least one corresponding aspect of the second media quality report exceeds a first threshold. The method further includes, upon determining that the difference exceeds the first threshold, determining a first path between the first node and the second node used by the communication. The method additionally includes isolating at least one source causing the difference between the first media quality report and the second media quality report.
Abstract:
A ceramic material has a perovskite structure and is represented by formula of (1−x)ABO3-xYZO3. In the formula, “x” is a real number that is greater than 0 and is less than 1 each of “A,” “B,” “Y,” and “Z” is one or more kinds selected from a plurality of metal ions M other than a Pb ion and alkali metal ions, “A” is bivalent, “B” is tetravalent, “Y” is trivalent or combination of trivalent metal ions, and “Z” is bivalent and/or trivalent metal ions, or a bivalent and/or pentavalent metal ions.