Abstract:
An object of the present invention is to provide a production method of a pneumatic tire in which a generation of a tread groove crack is prevented while maintaining productivity and tire performance, and a pneumatic tire produced by this production method. The production method of a pneumatic tire having a tread composed of a predetermined rubber composition for a tread comprises: step A of molding an unvulcanized rubber composition for a tread to obtain a tread shape unvulcanized rubber composition provided with a concave profile, a step B of laminating the tread shape unvulcanized rubber composition obtained in the step A with other unvulcanized rubber compositions for tire member to obtain an unvulcanized tire, and a step C of vulcanizing the unvulcanized tire obtained in the step B in a vulcanization mold.
Abstract:
A liquid silicone rubber coating composition is provided. The composition comprises (A) an organopolysiloxane having at least 2 alkenyl groups bonded to silicon atoms per molecule; (B) an organohydrogenpolysiloxane having at least 2 hydrogen atoms bonded to silicon atoms per molecule; (C) an addition reaction catalyst; (D) a fine powder silica; (E) an organic compound represented by the following general formula (1): wherein R1 is a monovalent hydrocarbon group and n is an integer of 2 to 10; (F) an organosilicon compound having an epoxy group and an alkoxy group bonded to a silicon atom in the molecule; and (G) either one or both of a titanium compounds and a zirconium compounds. When used for the silicone rubber coating layer on air bag base fabric, excellent low burning speed defined by FMVSS-302 is realized and the cured coating layer exhibits low surface tackiness with high anti-blocking property.
Abstract:
Provided are a rubber composition for a canvas chafer which, despite being low cost, is excellent in rim chafing resistance, resistance to rim damage, and processability (sheeting processability, rubber flow in the tire, adhesion to adjacent components) and performs well with respect to low heat build-up, and a pneumatic tire including the composition. The invention relates to a rubber composition for a canvas chafer, including: an isoprene-based rubber; a carbon black having an N2SA of 65-200 m2/g; and sulfur, wherein an amount of the isoprene-based rubber is 25-80% by mass and an amount of butadiene rubber is not more than 40% by mass, each based on 100% by mass of a rubber component of the rubber composition, and an amount of the carbon black is 40-80 parts by mass and an amount of the sulfur is 1.0-2.7 parts by mass, each per 100 parts by mass of the rubber component.
Abstract:
The present invention relates to a pneumatic tire having a pair of spaced apart bead components, a connecting carcass between the bead components, a pair of sidewalls overlying the carcass, and a rubber chafer adjacent to each of the sidewalls and positioned around at least a portion of each of the bead components and intended for contacting a rigid rim of a wheel, wherein the chafers comprise 100 parts by weight of elastomer; 20 to 60 phr of a low surface area carbon black having an Iodine absorption value in a range of from about 10 to about 50 as measured by ASTM D1510; 20 to 60 phr of a high surface area carbon black having an Iodine absorption value in a range of from about 100 to about 300 g/kg as measured by ASTM D1510; wherein the sidewalls comprise 100 phr of the same elastomer used in the chafers; 20 to 60 phr of the same low surface area carbon black used in the chafers; 10 to 20 phr of the same high surface area carbon black used in the chafers; wherein the weight ratio of high surface area carbon black in the chafer to high surface area carbon black in the sidewall is greater than 1.
Abstract:
Provided is a rubber composition for tire treads that is capable of producing tire treads for which abrasion resistance, rolling resistance, factory workability, and chipping resistance have been simultaneously improved, and a pneumatic tire manufactured using the same. The rubber composition according to the present invention includes 20 parts by mass to 100 parts by mass of carbon black combined with 100 parts by mass of a rubber component. The carbon black has a CTAB surface area of 60 m2/g to 105 m2/g, a 24M4DBP oil absorption of 70 cm3/100 g to 105 cm3/100 g, a N2SA/IA of 0.95 or less, and satisfies Expression (1). TINT (%)+0.4×24M4DBP oil absorption (cm3/100 g)−0.5×CTAB surface area (m2/g)>106 (1)
Abstract:
A method of producing an elastomer composite. The method includes A) combining a first fluid comprising elastomer latex with a second fluid comprising particulate filler; B) causing the elastomer latex to coagulate, thereby forming masterbatch crumb; C) bringing the masterbatch crumb to a water content of about 1 weight percent to about 20 weight percent, thereby forming a dewatered coagulum; D) removing water from the dewatered coagulum by subjecting the dewatered coagulum to mechanical energy, thereby causing the dewatered coagulum to heat as a result of friction, while allowing the dewatered coagulum to achieve a temperature of about 130° C. to about 190° C., wherein water content is reduced to about 0.5% to about 3% and wherein substantially all of the decrease in water content is accomplished by evaporation, thereby producing a masticated masterbatch; and E) subjecting the masticated masterbatch to at least an additional 0.3 MJ/kg of mechanical energy while further reducing the water content.
Abstract:
This invention relates to novel applications for alliform carbon, useful in conductors and energy storage devices, including electrical double layer capacitor devices and articles incorporating such conductors and devices. Said alliform carbon particles are in the range of 2 to about 20 percent by weight, relative to the weight of the entire electrode. Said novel applications include supercapacitors and associated electrode devices, batteries, bandages and wound healing, and thin-film devices, including display devices.
Abstract:
Provided is a resin composition that includes calcium carbonate contained in a polyester resin, a polyamide resin, or at thermosetting resin and that achieves good moldability. The resin composition includes calcium carbonate having a pB ranging from 6.0 to 8.5 and a 1N acetic acid-insoluble residue or 30% by mass or more and the calcium carbonate is contained in a polyester resin, a polyamide resin, or a thermosetting resin.
Abstract:
The present invention relates to a polymer composition which absorbs infrared (IR) radiation, containing a transparent thermoplastic plastic, an inorganic infrared absorber and at least one inorganic nano-scale pigment, and to the preparation and use of the polymer compositions according to the invention, and to products produced therefrom. In particular, the present invention relates to polymer compositions comprising a. at least one transparent thermoplastic material; b. at least one inorganic IR absorber which comprises a tungsten compound and wherein the IR absorber is present in an amount of from 0.0075 wt. % to 0.0750 wt. %, calculated as solids content of tungstate in the total composition; and c. at least one inorganic, nano-scale pigment present in an amount of from 0.0005 wt. % to 0.0035 wt. %, based on the total composition; and d. optionally further additives.
Abstract:
The invention relates to a rubber mixture, in particular for pneumatic vehicle tires, bands, and belts, having improved abrasion behavior. The rubber mixture is characterized by the following composition: at least one diene rubber and—at least one precipitated silicic acid having a CTAB surface area greater than or equal to 150 m2/g and a BET surface area greater than or equal to 150 m2/g and a DBP number between 180 and 350 g/100 g and a full width at half maximum, which is standardized to the location of the reflection, of the reflection of less than or equal to 0.95 and a homogeneity ratio d 25% to d 75% of 1.00 to 1.80 and a relative width Ypressed in the compressed state of less than or equal to 2.8 (g nm)/ml and a fineness index F.V.pressed in the compressed state between 100 and 140, and further additives.