Abstract:
Disclosed is wiring substrate and method of manufacturing thereof, the wiring substrate including a substrate having a high thermal conductive layer, in which at least one of a front surface and a rear surface of the substrate is a mounting surface for a variety of components; a window section formed in the substrate; and a connection terminal extended from an inside surface portion of the window section and bending in a direction perpendicular to a surface of the substrate.
Abstract:
A main body of an electronic part has multiple electrodes, to which multiple terminals are respectively connected. The terminals include a fuse terminal and a normal terminal, each of which extends from the main body to a printed board so that the main body is supported at a position above and separated from a board surface of the printed board. The fuse terminal has an intermediate portion between an electrode-connected portion and a land-connected portion. The intermediate portion has a cut-off portion having a smaller width than other portions of the fuse terminal, so that the cut-off portion is melted down when excess current flows in the fuse terminal. The intermediate portion extends in a direction parallel to the board surface or in a direction inclined to the board surface at an angle smaller than 90 degrees.
Abstract:
An electric apparatus for connecting to a first printed circuit includes a second printed circuit, which includes a first surface substantially parallel to a first plane and a second surface substantially parallel to a second plane perpendicular to the first plane. The first surface includes a first area and the second surface includes a smaller second area. The second printed circuit includes conductive traces in a layer of the second printed circuit. The electric apparatus further includes first and second conductive pins including first and second longitudinal axes, respectively. First and second notches in the second printed circuit include respective first and second openings through the second surface adapted to receive portions of the first and second pins and adapted to electrically connect the pins to first and second respective ones of the conductive traces. The first and second longitudinal axes are installed substantially parallel to the first plane.
Abstract:
To reduce the number of terminals that protrude from a printed board and to lower a cost in production of the base. A printed board including an electrical junction unit provided with a set of terminals soldered on printed boards. The set of terminals comprise first type terminals each having a small sectional area and second type terminals each having a sectional area greater than that of each of the first type terminals. The electrical junction unit is any one of only the first type terminals, only the second type terminals, and a combination of the first and second type terminals. The first type terminals are inserted into and protrude from through-holes in a base and are soldered on the printed boards. The second type terminals are soldered on the printed boards without using the base.
Abstract:
A transformer capable of adjusting its height is provided. The transformer is formed on a circuit board having a receiving hole. The transformer comprises a winding module, two magnetic core modules, a plurality of pins and a plurality of supporting bulges. The winding module comprises a winding baseboard and a winding pillar where a winding structure is formed thereon. The winding pillar is received in the receiving hole. The winding baseboard further comprises a corresponding surface heading to the circuit board. The magnetic core modules contact and hold the winding module. The pins are formed on the edge of the to winding baseboard to be connected to the circuit board around the receiving hole. The supporting bulges are formed between the corresponding surface and the circuit board, wherein the height of the corresponding surface relative to the circuit board is adjusted according to the supporting bulges.
Abstract:
An electrical component system and method is provided. In an embodiment, the electrical component system includes a circuit carrier onto which at least one electrical component has been mounted. The circuit carrier is injection molded around using a molding compound. An embedding length of a circuit-board conductor in the molding compound, situated between the contacting area on the circuit carrier and the exit location, is maximized.
Abstract:
A component fixed on a circuit board. The circuit board has a first perforation and a second perforation. The component has a body, a first pin, and a second pin. The first pin is connected to a side of the body. The first pin has a first section, a first bent section, and a second bent section. The first bent section is stuck in the first perforation. The second pin is connected to another side of the body. The second pin has a second section, a third bent section, and a fourth bent section. The third bent section is stuck in the second perforation. The design prevents the body from toppling and makes it stable and convenient to assemble the component onto the circuit board.
Abstract:
To reduce the number of terminals that protrude from a printed board and to lower a cost in production of the base. A printed board including an electrical junction unit provided with a set of terminals soldered on printed boards. The set of terminals comprise first type terminals each having a small sectional area and second type terminals each having a sectional area greater than that of each of the first type terminals. The electrical junction unit is any one of only the first type terminals, only the second type terminals, and a combination of the first and second type terminals. The first type terminals are inserted into and protrude from through-holes in a base and are soldered on the printed boards. The second type terminals are soldered on the printed boards without using the base.
Abstract:
Warpage and twist of a solid-state image sensing apparatus is controlled, thereby preventing displacement occurring to the solid-state image sensing apparatus when it is mounted on a printed circuit board. The solid-state image sensing apparatus comprises a plurality of outer leads, and the outer leads each comprises a horizontal portion protruding in the horizontal direction from a side face of a package body for encasing a solid-state image sensing chip therein, an end portion extending in a direction orthogonal to the horizontal portion, and disposed directly below the horizontal portion, a mid portion positioned between the horizontal portion, and the end portion, a first bend formed between the horizontal portion, and the mid portion, and a second bend formed between the mid portion, and the end portion.
Abstract:
The present application discloses a casing and a corresponding mounting device, for protecting pins of an element from melting during a process flow in which the element is soldered on a circuit board, while saving an area required for soldering the element on the circuit board. The casing comprises a hollow body provided with at least one opening.