Abstract:
This application provides methods and apparatus for controlling aspects of a synchronous rectifier power converter. In an example, an apparatus can include a minimum duty cycle control circuit configured to receive first control signals for one or more switches associated with the synchronous rectifier power converter, to compare a duty cycle of the first control signals to a minimum duty cycle threshold, and to provide second control signals having at least the minimum duty cycle for an active snubber switch of the synchronous rectifier power converter.
Abstract:
A method of detecting enclosure leakage of an electrodynamic loudspeaker mounted in an enclosure or box may include applying an audio signal to a voice coil of the electrodynamic loudspeaker through an output amplifier and detecting a voice coil current flowing into the voice coil. A voltage across the voice coil may be detected and an impedance or admittance of the loudspeaker across a predetermined audio frequency range may be detected based on the detected voice coil current and voice coil voltage. A fundamental resonance frequency of the loudspeaker may be determined based on the detected impedance or admittance and compared with a nominal fundamental resonance frequency of the loudspeaker representing a sealed state of the enclosure. Acoustic leakage of the enclosure may be detected based on a deviation between the determined the fundamental resonance frequency and the nominal fundamental resonance frequency of the electrodynamic loudspeaker.
Abstract:
A method of forming a junction field effect transistor, the transistor comprising: a back gate; a channel; a top gate; a drain and a source in current flow with the channel; wherein the method comprises selecting a first channel dimension between the top gate and the back gate such that a significant current flow path in the channel occurs in a region of relatively low electric field strength.
Abstract:
Apparatus and method for acquiring and tracking a data signal are disclosed. Two different CDR circuits are configured to acquire and track data based on two different modulation schemes. While in the acquisition mode, the first CDR circuit may acquire data signal by sampling the signal at a reduced clock rate and handover to the second CDR circuit when a preamble is found. Also in the acquisition mode, the data acquisition and tracking circuit may determine the power level of the preamble signal and dynamically adjust the threshold level for the tracking period upon finding of the preamble.
Abstract:
An amplifier input stage comprising first and second p-type transistors, wherein sources of the first and second p-type transistors are connected to a first node, a drain of the first p-type transistor is connected to a first output of the amplifier input stage, a drain of the second p-type transistor is connected to a second output of the amplifier input stage, a gate of the first p-type transistor is configured to receive a first signal of an input stage differential input signal and a gate of the second p-type transistor is configured to receive a second signal of the input stage differential input signal; first and second n-type transistors, wherein sources of the first and second n-type transistors are connected to a second node, a drain of the first n-type transistor is connected to a third output of the amplifier input stage, a drain of the second n-type transistor is connected to a fourth output of the amplifier input stage, a gate of the first n-type transistor is configured to receive the first signal of the input stage differential input signal and a gate of the second n-type transistor is configured to receive the second signal of the input stage differential input signal; a first circuit arranged to provide a first portion of a first bias current to the first node; and a second circuit arranged to draw a second portion of the first bias current from the second node; wherein the first and second portions are determined by a first signal of an amplifier input signal.
Abstract:
An analog to digital convertor (ADC) comprises an integrator having an input selectively connected to an intermediate frequency (IF) signal input and an output connected to a summer. The summer has an output connected to an input of a quantizer, the quantizer output being operatively connected to a signal strength indicator. The integrator includes a programmable gain feedback component. The summer has a synthesized calibration signal input, the value of the programmable gain feedback component being configured to vary when a synthesized calibration signal at the intermediate frequency is applied to the summer. The signal strength indicator is configured to detect a value of the programmable gain feedback component when the signal strength is minimized and to calibrate the ADC accordingly.
Abstract:
A voltage measurement apparatus is provided that includes: a potential attenuator configured to be electrically connected between first and second conductors, which are electrically coupled to a source, wherein the potential attenuator includes a first impedance and a reference impedance arrangement in series with each other, wherein the reference impedance arrangement has an electrical characteristic that can be changed in a known fashion; and further including a processing arrangement configured to acquire at least one signal from the reference impedance arrangement, the at least one signal reflecting change of the electrical characteristic in the known fashion; and to determine a voltage between the first and second conductors in dependence on the fashion in which the electrical characteristic is changed being known and the at least one signal.
Abstract:
A MEMS apparatus has a substrate, an input node, an output node, and a MEMS switch between the input node and the output node. The switch selectively connects the input node and the output node, which are electrically isolated when the switch is open. The apparatus also has an input doped region in the substrate and an output doped region in the substrate. The input doped region and output doped region are electrically isolated through the substrate—i.e., the resistance between them inhibits non-negligible current flows between the two doped regions. The input doped region forms an input capacitance with the input node, while the output doped region forms an output capacitance with the output node.
Abstract:
A calibration system for an analog-to-digital converter (ADC) an internal ADC that receives an analog input and converts the analog input to digital multi-bit data. The calibration system also includes a reference shuffling circuit that shuffles reference values of comparators of the internal ADC. Further, the calibration system includes a calibration circuit that calibrates the comparators of the internal ADC. The calibration system includes a digital block that measures an amplitude based on the digital multi-bit data. Additionally, the calibration system includes calibration logic that controls the calibration circuit based on an output of the digital block.
Abstract:
A micro-isolator is described. The micro-isolator may include a first isolator element, a second isolator element, and a first dielectric material separating the first isolator element from the second isolator element. A second dielectric material may completely or partly encapsulate the second isolator element, or may be present at outer corners of the second isolator element. The second dielectric material may have a larger bandgap than the first dielectric material, and its configuration may reduce electrostatic charge injection into the first dielectric material. The micro-isolator may be formed using microfabrication techniques.