Abstract:
In a non-volatile semiconductor memory device using a charge storage film, it is intended to prevent a sequence disturb such as an erroneous write or erase of another memory cell on one and same word line which occurs depending on a bias transition path in stand-by state and write state. In connection with rise and fall of a word line bias, the present invention adopts a procedure such that a diffusion region voltage Vs on a memory transistor side is changed, and after the voltage Vs passes a certain intermediate value Vsx, a gate voltage Vmg of the memory transistor is changed. Alternatively, there is adopted a procedure such that the gate voltage Vmg of the memory transistor is changed, and after the voltage Vmg passes a certain intermediate value Vmgx, the diffusion layer voltage Vs on the memory transistor side is changed. The values of Vsx and Vmgx are determined from the magnitude of the electric field in a gate insulating film not causing FN tunneling electron injection that causes a change in threshold voltage and the magnitude of a potential barrier against holes not causing BTBT hot hole injection.
Abstract:
A film formed on a surface of a wafer on which an integrated circuit is to be constructed can be planarized by using a fixed abrasive tool regardless of the width of elements of a pattern underlying the film. The fixed abrasive tool is liable to form scratches in the surface of the film. A planarizing process of the present invention employs a fixed abrasive tool containing substances harder than the film to be planarized in a content of 10 ppm or below and having a mean pore diameter of 0.2 &mgr;m or below.
Abstract:
In the polishing machine 10 for pressing the polished surface 7 of the workpiece 1 against the face where there are abrasives 15 of the rotating polishing tool 11 and executing chemical mechanical polishing, the brushing device 30, the cleaner 40, the abrasive supplier 52, and the pure water supplier 60 are sequentially arranged behind the location of the head 20 for pressing the workpiece 1 against the polishing tool 11 in the rotational direction. The cleaner 40 sprays the cleaning water 47 to the face where there are abrasives 15 of the rotating polishing tool 11 and sucks and collects it by the vacuum hole 45. Fresh slurry 62 is always supplied by the slurry supplier 63 comprising the abrasive supplier 52 and the pure water supplier 60.
Abstract:
A charge storage layer interposed between a memory gate electrode and a semiconductor substrate is formed shorter than a gate length of the memory gate electrode or a length of insulating films so as to make the overlapping amount of the charge storage layer and a source region to be less than 40 nm. Therefore, in the write state, since the movement in the transverse direction of the electrons and the holes locally existing in the charge storage layer decreases, the variation of the threshold voltage when holding a high temperature can be reduced. In addition, the effective channel length is made to be 30 nm or less so as to reduce an apparent amount of holes so that coupling of the electrons with the holes in the charge storage layer decreases; therefore, the variation of the threshold voltage when holding at room temperature can be reduced.
Abstract:
An operation scheme for operating stably a semiconductor nonvolatile memory device is provided.When hot-hole injection is conducted in the semiconductor nonvolatile memory device of a split gate structure, the hot-hole injection is verified using a crossing point that does not change with time. Thus, an erased state can be verified without being aware of any time-varying changes.Also, programming or programming/erasure is conducted by repeating pulse voltage or multi-step voltage application to a gate section multiple times.
Abstract:
A method of manufacturing a non-volatile semiconductor memory device is provided which overcomes a problem of penetration of implanted ions due to the difference of optimal gate height in simultaneous formation of a self-align split gate type memory cell utilizing a side wall structure and a scaled MOS transistor. A select gate electrode to form a side wall in a memory area is formed to be higher than that of the gate electrode in a logic area so that the height of the side wall gate electrode of the self-align split gate memory cell is greater than that of the gate electrode in the logic area. Height reduction for the gate electrode is performed in the logic area before gate electrode formation.
Abstract:
A magnetic head, according to one embodiment, includes a sensor film, a sensor cap film provided above the sensor film, a pair of shields including an upper magnetic shield and a lower magnetic shield which serve as electrodes that pass current in a film thickness direction of the sensor film, a track insulating film contacting both sides of the sensor film in the track width direction, a graded domain control film arranged on both sides in the track width direction of the sensor film adjacent the track insulating film, and an element height direction insulating film positioned on an opposite side of the sensor film relative to an air-bearing surface, wherein an edge position of the element height direction insulating film adjacent the sensor film on the air-bearing surface side is substantially the same as an edge position of the sensor cap film in the element height direction.
Abstract:
A non-volatile semiconductor memory device with good write/erase characteristics is provided. A selection gate is formed on a p-type well of a semiconductor substrate via a gate insulator, and a memory gate is formed on the p-type well via a laminated film composed of a silicon oxide film, a silicon nitride film, and a silicon oxide film. The memory gate is adjacent to the selection gate via the laminated film. In the regions on both sides of the selection gate and the memory gate in the p-type well, n-type impurity diffusion layers serving as the source and drain are formed. The region controlled by the selection gate and the region controlled by the memory gate located in the channel region between said impurity diffusion layers have the different charge densities of the impurity from each other.
Abstract:
Performance of a non-volatile semiconductor storage device which performs electron writing by hot electrons and hole erasure by hot holes is improved. A non-volatile memory cell which performs a writing operation by electrons and an erasure operation by holes has a p-type well region, isolation regions, a source region, and a drain region provided on an Si substrate. A control gate electrode is formed via a gate insulating film between the source region and the drain region. In a left-side side wall of the control gate electrode, a bottom Si oxide film, an electric charge holding film, a top Si oxide film, and a memory gate electrode are formed. The electric charge holding film is formed from an Si nitride film stoichiometrically excessively containing silicon.
Abstract:
An operation scheme for operating stably a semiconductor nonvolatile memory device is provided.When hot-hole injection is conducted in the semiconductor nonvolatile memory device of a split gate structure, the hot-hole injection is verified using a crossing point that does not change with time. Thus, an erased state can be verified without being aware of any time-varying changes.Also, programming or programming/erasure is conducted by repeating pulse voltage or multi-step voltage application to a gate section multiple times.