Abstract:
Disclosed are fast blooming surfactants that are suitable for inclusion in film compositions that will subsequently treated with a low surface energy material to create a surface energy gradient between the underlying polymeric structure of the film and spaced apart microscopic depositions of the low surface energy material. The surfactants have a permeation rate of less than 240 hours, a surface tension in an aqueous solution at a concentration that is greater than the critical micelle concentration that lies between the critical surface tension of the underlying polymeric structure of the web material and the critical surface tension of the low surface energy depositions; and an HLB between about 6 and about 16. Preferred surfactants also have a weight loss on heating to 250° C. that is less than about 20%. More preferred surfactants have a hydrophobic chain that is substantially saturated.
Abstract:
Absorbent foams materials that are capable of acquiring and distributing aqueous fluids, especially discharged body fluids such as urine. These absorbent foams combine relatively high capillary absorption pressures and capacity-per-weight properties that allow them to acquire fluid, with or without the aid of gravity. These absorbent foams also give up this fluid efficiently to higher absorption pressure storage materials, including foam-based absorbent fluid storage components, without collapsing. These absorbent foams are made by polymerizing high internal phase emulsions (HIPEs).
Abstract:
An article having an embossed seal includes at least two webs, and an embossed seal joining a portion of the at least two webs, the seal including co-registered concentric discrete extended elements formed in the at least two webs, the discrete extended elements having open proximal ends.
Abstract:
A colored web material comprising a plurality of discrete extended elements. The colored web material comprises a colorant incorporated in the material itself or a colorant disposed on at least one surface of the web material. The discrete extended elements comprise thinned portions at the distal ends and/or along the sidewalls of the discrete extended elements. In one embodiment, the discrete extended elements have a diameter of less than about 500 microns. In one embodiment, the colored web material comprises at least about 95 discrete extended elements per square centimeter. In one embodiment, the discrete extended elements have an aspect ratio of at least about 0.2.
Abstract:
A process for making an embossed web. A precursor web is provided between a forming structure and a static pressure plenum. The forming structure has a plurality of discrete apertures or depressions. Pressure is provided by the static pressure plenum against the precursor web and the forming structure to force the precursor web into the apertures or depressions of forming structure to form the embossed web. The resulting embossed web has a plurality of discrete extended elements.
Abstract:
Apparatus for making micro-textured webs. The apparatus comprises a pair of mated forming structures having a first forming structure, a second forming structure, and a deformation zone; wherein at least the first forming structure comprises voids, and wherein at least the second forming structure comprises protrusions wherein at least one protrusion has center-to-center spacings of less than about 800 microns with at least three of its adjacent protrusions. The voids of the first forming structure are engagable with the protrusions of the second forming structure at an engagement position to form a micro-textured web. In another embodiment, the apparatus comprises a pair of counter-rotating rollers wherein the first roller comprises grooves having a length, wherein the length of the grooves are oriented at an angle different from the machine direction.
Abstract:
A method for making a polymeric web exhibiting a soft and silky tactile impression on at least one side thereof. The method comprises the steps of providing a forming structure being moveable upon a forming drum and comprising a plurality of protrusions extending from the forming structure, the protrusions being generally columnar forms having an average aspect ratio of at least about 1. The forming structure is disposed adjacent a vacuum chamber and vacuum is applied at a sufficient level to induce a sufficient partial pressure to conform a precursor web to the forming structure, thereby forming the polymeric web. The precursor web can be cast directly onto the forming structure, or it can be re-heated by re-heat means to elevate its temperature sufficiently to permit vacuum formation.
Abstract:
An absorbent article comprising an apertured topsheet having a body-facing side and a garment-facing side, a backsheet, an absorbent core positioned between the topsheet and the backsheet, and a colored area viewable through a topsheet by a user viewing the body-facing side is provided. The absorbent article comprises a visual texture composed of less than about 65 objects per cm2 having an average mean areas greater than about 0.35 mm2.
Abstract:
A process for making an embossed web. A precursor web is provided between a forming structure and a static pressure plenum. The forming structure has a plurality of discrete apertures or depressions. Pressure is provided by the static pressure plenum against the precursor web and the forming structure to force the precursor web into the apertures or depressions of forming structure to form the embossed web. The resulting embossed web has a plurality of discrete extended elements.
Abstract:
A process for making an embossed web. A precursor web is provided between a forming structure and a compliant substrate. The forming structure has a plurality of discrete apertures or depressions. Pressure is provided between the compliant substrate and the forming structure to force the precursor web into the apertures or depressions of forming structure to form the embossed web. The resulting embossed web has a plurality of discrete extended elements.