Abstract:
A drinking cup assembly having a cup having an open end, a cap adapted to enclose the open end, the cap having a drinking spout and an air vent and a pair of mating surfaces that align with the drinking spout and the air vent, and a removable flow control valve adapted to engage the mating surfaces. The cap has a retaining mechanism that in conjunction with one mating surface secures in place the flow control element when not in use.
Abstract:
A cleaning device has a handle. The handle has a wall with a distal end with a recess extending axially into the handle, and an elongated nipple brush secured in the recess, such that the distal end of the brush extends axially beyond the distal end of the handle. The nipple brush can be housed in a core having a main body with a sponge secured thereto and an extension with opposed depressible tabs that can be inserted into the recess of the handle. Each tab has one or more protuberances that are biased to seat in opposed apertures in the wall of the handle. The core has an axial channel. When the extension of the core is inserted in the recess and attached to the handle, there is provided a cleaning device with a sponge at one end of the handle and a nipple brush housed in the channel of the core.
Abstract:
A cup is provided having a lid with a spout defined by walls tapered towards a distal end of the spout. The lid has handles extending therefrom that are preferably formed of a first and second material having different Shore A hardnesses to define a rigid portion and a gripping portion.
Abstract:
A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or microelectromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
Abstract:
Material is deposited in a desired pattern by spontaneous deposition of precursor gas at regions of a surface that are prepared using a beam to provide conditions to support the initiation of the spontaneous reaction. Once the reaction is initiated, it continues in the absence of the beam at the regions of the surface at which the reaction was initiated.
Abstract:
A method and apparatus for selective etching a substrate using a focused beam. For example, multiple gases may be used that are involved in competing beam-induced and spontaneous reactions, with the result depending on the materials on the substrate. The gases may include, for example, an etchant gas and an auxiliary gas that inhibits etching.
Abstract:
An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.