摘要:
A element isolation insulating film is formed around the device regions in the silicon substrate. The device regions are formed an n-type diffusion layer region, a p-type diffusion layer region, a p-type extension region, an n-type extension region, a p-type source/drain region, an n-type source/drain region, and a nickel silicide film. Each gate dielectric film is made up of a silicon oxide film and a hafnium silicon oxynitride film. The n-type gate electrode is made up of an n-type silicon film and a nickel silicide film, and the p-type gate electrode is made up of a nickel silicide film. The hafnium silicon oxynitride films are not formed on the sidewalls of the gate electrodes.
摘要:
A element isolation insulating film is formed around the device regions in the silicon substrate. The device regions are formed an n-type diffusion layer region, a p-type diffusion layer region, a p-type extension region, an n-type extension region, a p-type source/drain region, an n-type source/drain region, and a nickel silicide film. Each gate dielectric film is made up of a silicon oxide film and a hafnium silicon oxynitride film. The n-type gate electrode is made up of an n-type silicon film and a nickel silicide film, and the p-type gate electrode is made up of a nickel silicide film. The hafnium silicon oxynitride films are not formed on the sidewalls of the gate electrodes.
摘要:
A method of manufacturing a semiconductor device, includes forming a gate insulating film on a semiconductor substrate, and forming a gate electrode on the gate insulting film, wherein forming the gate insulating film includes forming a metal silicate film, and a silicon source used for forming the metal silicate film includes at least one of a first hydrocarbon silicon compound obtained by replacing at least one of hydrogen atoms in monosilane with an alkyl group, a second hydrocarbon silicon compound obtained by replacing at least one of hydrogen atoms in disilane with an alkyl group, and a third hydrocarbon silicon compound obtained by replacing at least one of hydrogen atoms in trisilane with an alkyl group.
摘要:
An annular member is installed on a circular cylinder section of a trunnion, and a roller member, in the inner periphery of which a needle bearing is held, is installed on the circular cylinder section. The needle bearing is held between a flange section formed on one end of the roller member and the annular member installed on the trunnion with a predetermined gap between them. Further, a gap (X) between the needle bearing and the annular member is set to satisfy the following relationship. X>R/2·(1/cos θ max−1) where R: Radius of rotation of the center of the roller member relative to the center axis of an outer member. θ max: Maximum inclination angle of an inner member.
摘要翻译:环形构件安装在耳轴的圆筒部分上,并且在圆筒部分上安装有在其内周上保持有滚针轴承的滚轮构件。 滚针轴承保持在形成在滚子构件的一端的凸缘部分和安装在耳轴上的环形构件之间,其间具有预定的间隙。 此外,滚针轴承和环形构件之间的间隙(X)设定为满足以下关系。 X> R / 2(1 /cosθmax-1)其中R:辊构件的中心相对于外部构件的中心轴线的旋转半径。 θmax:内部构件的最大倾斜角度。
摘要:
A semiconductor device includes a first insulating film on a silicon substrate and a second insulating film on the first insulating film. The first insulating film is a silicon oxide film having a thickness of 1 nm or less and a suboxide content of 30% or less. The second insulating film is a high dielectric constant insulating film.
摘要:
A semiconductor device comprises a semiconductor substrate in which a semiconductor element is formed, an interlayer insulating film formed on the semiconductor substrate, an insulating barrier layer, formed on the interlayer insulating film by plasma nitriding, for preventing diffusion of a metal constituting a wiring layer, a conductive barrier layer, formed on the insulating barrier layer, for preventing diffusion of the metal, and a wiring layer formed of the metal on the conductive barrier layer. A bottom portion of the wiring layer is protected by the conductive barrier layer and the insulating barrier layer. Therefore, the diffusion of the metal constituting the wiring layer can be surely prevented.
摘要:
An SiO.sub.2 film and a first wiring layer are arranged in this order on a GaAs substrate. A capacitor is formed on the first wiring layer. The capacitor includes a lower electrode which has a multi-layer structure consisting of a Ti layer, an Mo layer, and a Pt layer in this order from underside. The capacitor also includes a dielectric film made of strontium titanate. The capacitor further includes an upper electrode which has a multi-layer structure consisting of a WN.sub.x layer (120 nm) and a W layer (300 nm) in this order from underside. That surface of the upper electrode, which is in contact with the dielectric film, is defined by the tungsten nitride layer.
摘要:
A semiconductor device includes a semiconductor substrate; a gate insulation film formed on the semiconductor substrate; a silicide gate electrode of an n-type MISFET formed on the gate insulation film; and a silicide gate electrode of a p-type MISFET formed on the gate insulation film and having a thickness smaller than that of the silicide gate electrode of the n-type MISFET, the silicide gate electrode of the p-type MISFET having a ratio of metal content higher than that of the silicide gate electrode of the n-type MISFET.
摘要:
A method of manufacturing a semiconductor device includes forming a trench in an interlayer dielectric film on the semiconductor substrate, the trench reaching a semiconductor substrate and having a sidewall made of silicon nitride film; depositing a gate insulation film made of a HfSiO film at a temperature within a range of 200 degrees centigrade to 260 degrees centigrade, so that the HfSiO film is deposited on the semiconductor substrate which is exposed at a bottom surface of the trench without depositing the HfSiO film on the silicon nitride film; and filling the trench with a gate electrode made of metal.
摘要:
A semiconductor device includes a substrate having first and second regions on a surface thereof, a first conductivity type first MISFET formed in the first region and a second conductivity type second MISFET formed in the second region. The first MISFET includes a silicon oxide film or a silicon oxynitride film formed on the surface of the substrate and a first insulating film which is formed in contact with the silicon oxide film or the silicon oxynitride film and which has a first element forming electric dipoles that reduce a threshold voltage of the first MISFET and the second MISFET includes a silicon oxide film or a silicon oxynitride film formed on the surface of the substrate, and a second insulating film which is formed in contact with the silicon oxide film or the silicon oxynitride film formed on the surface of the substrate and which has a second element forming electric dipoles in a direction opposite to that in the first MISFET.