Abstract:
An attenuation reduction control structure for high-frequency signal transmission lines of a flexible circuit board includes an impedance control layer formed on a surface of a substrate. The impedance control layer includes an attenuation reduction pattern that is arranged in an extension direction of the high-frequency signal transmission lines of the substrate and corresponds to bottom angle structures of the high-frequency signal transmission lines in order to improve attenuation of a high-frequency signal transmitted through the high-frequency signal transmission lines. An opposite surface of the substrate includes a conductive shielding layer formed thereon. The conductive shielding layer is formed with an attenuation reduction pattern corresponding to top angle structures of the high-frequency signal transmission lines.
Abstract:
Disclosed is a grounding pattern structure for high-frequency connection pads of a circuit board. A substrate of the circuit board includes a component surface on which at least a pair of high-frequency connection pads. At least a pair of differential mode signal lines are formed on the substrate and connected to the high-frequency connection pads. The grounding surface of the substrate includes a grounding layer formed at a location corresponding to the differential mode signal lines. The grounding surface of the substrate includes a grounding pattern structure formed thereon to correspond to a location adjacent to the high-frequency connection pads. The grounding pattern structure is electrically connected to the grounding layer. The component surface of the substrate can be provided with a connector mounted thereto with signal terminals of the connector soldered to the high-frequency connection pads.
Abstract:
Disclosed is a double-side-conducting flexible-circuit flat cable with cluster section, which includes a flexible circuit substrate, a first electrical conduction path, a second electrical conduction path, a plurality of first and second conductive contact zones. The flexible circuit substrate has a first surface and a second surface and includes, in an extension direction, a first connection section, a cluster section, and at least one second connection section. The cluster section is composed of a plurality of clustered flat cable components formed by slitting in the extension direction. The first and second electrical conduction paths are respectively formed on the first and second surfaces of the flexible circuit substrate and each extends along one of the clustered flat cable components of the cluster section. The plurality of first and second conductive contact zones are respectively arranged on the first and second surfaces of the flexible circuit substrate at the first connection section. Each of the first and second conductive contact zones extends along one of the electrical conduction paths of the cluster section toward the second connection section.
Abstract:
A circuit board structure that includes a resin-based conductive adhesive layer is disclosed, in which a conductive layer is arranged between a first circuit board and a second circuit board. The conductive layer includes a first conductive paste layer and the resin-based conductive adhesive layer is formed on the first conductive paste layer. The resin-based conductive adhesive layer contains a sticky resin material and a plurality of conductive particles distributed in the sticky resin material. The plurality of conductive particles establish an electrical connection between the first conductive paste layer and the resin-based conductive adhesive layer.
Abstract:
A stacked insertion structure for a flexible circuit board is provided. The flexible circuit board has an insertion section that is connected through a bent connection section to a fold-back section. The fold-back section is backward folded, through the bent connection section, toward and stacked on the insertion section such that a second coupling surface of the fold-back section corresponds to and overlap a first coupling surface of the insertion section for being insertable into an insertion socket of a connector. The fold-back section and the insertion section are bonded together with an adhesive layer therebetween or a height adjustment layer is provided therebetween to adjust an overall height of the two.
Abstract:
A signal attenuation reduction structure for a flexible circuit board includes at least one conductive paste coating zone formed on surfaces of signal lines and an insulation layer formed on a dielectric layer of the flexible circuit board such that the conductive paste coating zone corresponds to at least one signal line or covers a plurality of signal lines. An anisotropic conductive film is formed on surfaces of the insulation layer and the conductive paste coating zone of the flexible circuit board. The anisotropic conductive film is pressed to bond between the conductive paste coating zone and a shielding layer such that the conductive paste coating zone and the shielding layer achieve electrical connection therebetween in a vertical direction through the anisotropic conductive film.
Abstract:
Disclosed is a structure of a flexible circuit board combined with a carrier board. The carrier board includes a thick copper layer, a thin copper layer, and a release layer formed between the thick copper layer and the thin copper layer. The flexible circuit substrate and the carrier board are bonded together by an adhesive layer. In a subsequent process, the release layer, together with the thick copper layer, is peeled from a top surface of the thin copper layer and the thin copper layer is preserved by being bonded by the adhesive layer to the flexible circuit substrate.
Abstract:
Disclosed is a structure of a flexible circuit board combined with a carrier board. The carrier board includes a thick copper layer, a thin copper layer, and a release layer formed between the thick copper layer and the thin copper layer. The flexible circuit substrate and the carrier board are bonded together by an adhesive layer. In a subsequent process, the release layer, together with the thick copper layer, is peeled from atop surface of the thin copper layer and the thin copper layer is preserved by being bonded by the adhesive layer to the flexible circuit substrate.
Abstract:
An interconnecting conduction structure for electrically connecting conductive traces of a lapped flexible circuit board is disclosed. The lapped flexible circuit board includes a first flexible circuit board and a second flexible circuit board. A through hole is formed in the second flexible circuit board and an interconnecting conduction member is filled in the through hole of the second flexible circuit board. The interconnecting conduction member is electrically connected to a second solder pad of the second flexible circuit board and a first solder pad of the first flexible circuit board in order to formed a lapped connection between conductive traces of the first flexible circuit board and the second flexible circuit board.
Abstract:
Disclosed is a tear protection structure for a flexible circuit board. In an extension section of a flexible circuit board, at least a slit line is formed. The slit line has at least a terminal end from which a stress-diverting cut segment extends. The stress-diverting cut segment is formed by cutting in a cutting direction that defines an angle with respect to an extension direction of the extension section to serve as the tear protection structure of the flexible circuit board. The extension section of the flexible circuit board is foldable along the slit line. The stress-diverting cut segment may further include a tear protection hole formed in a termination end thereof.