Modifying work function of a metal film with a plasma process

    公开(公告)号:US10347492B2

    公开(公告)日:2019-07-09

    申请号:US15874132

    申请日:2018-01-18

    Abstract: A sequential plasma process is employed to enable the modification of the work function of a p-type metal layer in a metal gate structure. The sequential plasma process includes a plasma hydrogenation and a plasma process that includes electronegative species. The sequential plasma process is performed on a p-type metal layer in a film stack, thereby replacing suboxides and/or other non-stoichiometrically combined electronegative atoms disposed on or within layers of the film stack with stoichiometrically combined electronegative atoms, such as O atoms. As a result, the work function of the p-type metal layer can be modified without changing a thickness of the p-type metal layer.

    Metal based hydrogen barrier
    23.
    发明授权

    公开(公告)号:US12288717B2

    公开(公告)日:2025-04-29

    申请号:US18581598

    申请日:2024-02-20

    Abstract: A method of forming an electronic device is disclosed. The method comprises forming depositing a metal on a substrate, the metal comprising one or more of copper (Cu), titanium (Ti), or tantalum (Ta). A metal cap is deposited on the metal. The metal cap comprises one or more of molybdenum (Mo), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), platinum (Pt), or gold (Au). The substrate is then exposed to an anneal process, e.g., a hydrogen high-pressure anneal. The formation of the metal cap on the metal minimizes parasitic adsorption of hydrogen by the underlying metal.

    Integrated dipole region for transistor

    公开(公告)号:US12112951B2

    公开(公告)日:2024-10-08

    申请号:US17673905

    申请日:2022-02-17

    Abstract: Methods of manufacturing and processing semiconductor devices (i.e., electronic devices) are described. Embodiments of the disclosure advantageously provide electronic devices which comprise an integrated dipole region to meet reduced thickness and lower thermal budget requirements. The electronic devices described herein comprise a source region, a drain region, and a channel separating the source region and the drain region, and a dipole region having an interfacial layer, a metal film substantially free of non-metal atoms on the interfacial layer, and a high-κ dielectric layer on the metal film. In some embodiments, the dipole region of the electronic devices comprises an interfacial layer, a high-κ dielectric layer on the interfacial layer, and a metal film on the high-κ dielectric layer. In some embodiments, the methods comprise annealing the substrate to drive particles of metal from the metal film into one or more of the interfacial layer or the high-κ dielectric layer.

    PMOS HIGH-K METAL GATES
    29.
    发明申请

    公开(公告)号:US20220077298A1

    公开(公告)日:2022-03-10

    申请号:US17013161

    申请日:2020-09-04

    Abstract: Metal gate stacks and integrated methods of forming metal gate stacks are disclosed. Some embodiments comprise NbN as a PMOS work function material at a thickness in a range of greater than or equal to 5 Å to less than or equal to 50 Å. The PMOS work function material comprising NbN has an effective work function of greater than or equal to 4.75 eV. Some embodiments comprise HfO2 as a high-κ metal oxide layer. Some embodiments provide improved PMOS bandedge performance evidenced by improved flatband voltage. Some embodiments exclude transition metal niobium nitride materials as work function materials.

Patent Agency Ranking