Abstract:
One method disclosed herein includes forming a sacrificial gate structure comprised of upper and lower sacrificial gate electrodes, performing at least one etching process to define a patterned upper sacrificial gate electrode comprised of a plurality of trenches that expose a portion of a surface of the lower sacrificial gate electrode and performing another etching process through the patterned upper sacrificial gate electrode to remove the lower sacrificial gate electrode and a sacrificial gate insulation layer and thereby define a first portion of a replacement gate cavity that is at least partially positioned under the patterned upper sacrificial gate electrode.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a first epi semiconductor material in a source/drain region of a transistor device, the first epi semiconductor material having a first lateral width at an upper surface thereof, forming a second epi semiconductor material on the first epi semiconductor material and above at least a portion of one of a gate cap layer or one of the sidewall spacers of the device, wherein the second epi semiconductor material has a second lateral width at an upper surface thereof that is greater than the first lateral width, and forming a metal silicide region on the upper surface of the second epi semiconductor material.
Abstract:
One illustrative method disclosed herein includes forming a plurality of initial fins in a substrate, wherein at least one of the initial fins is a to-be-removed fin, forming a material adjacent the initial fins, forming a fin removal masking layer above the plurality of initial fins, removing a desired portion of the at least one to-be-removed fin by: (a) performing a recess etching process on the material to remove a portion, but not all, of the material positioned adjacent the sidewalls of the at least one to-be-removed fin, (b) after performing the recess etching process, performing a fin recess etching process to remove a portion, but not all, of the at least one to be removed fin and (c) repeating steps (a) and (b) until the desired amount of the at least one to-be-removed fin is removed.
Abstract:
One method disclosed includes removing at least a portion of a fin to thereby define a fin trench in a layer of insulating material, forming a substantially defect-free first layer of semiconductor material in the fin trench, forming a second layer of semiconductor material on an as-formed upper surface of the first layer of semiconductor material, forming an implant region at the interface between the first layer of semiconductor material and the substrate, performing an anneal process to induce defect formation in at least the first layer of semiconductor material, forming a third layer of semiconductor material on the second layer of semiconductor material, forming a layer of channel semiconductor material on the third layer of semiconductor material, and forming a gate structure around at least a portion of the channel semiconductor material.
Abstract:
One method disclosed herein includes forming a sacrificial gate structure comprised of upper and lower sacrificial gate electrodes, performing at least one etching process to define a patterned upper sacrificial gate electrode comprised of a plurality of trenches that expose a portion of a surface of the lower sacrificial gate electrode and performing another etching process through the patterned upper sacrificial gate electrode to remove the lower sacrificial gate electrode and a sacrificial gate insulation layer and thereby define a first portion of a replacement gate cavity that is at least partially positioned under the patterned upper sacrificial gate electrode.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a region of a sacrificial material in a semiconductor substrate at a location where the portion of the fin to be removed will be located, after forming the region of sacrificial material, performing at least one first etching process to form a plurality of fin-formation trenches that define the fin, wherein at least a portion of the fin is comprised of the sacrificial material, and performing at least one second etching process to selectively remove substantially all of the sacrificial material portion of the fin relative to the substrate.
Abstract:
One method disclosed includes, among other things, forming a fin structure comprised of a semiconductor material, a first epi semiconductor material and a second epi semiconductor material, forming a sacrificial gate structure above the fin structure, forming a sidewall spacer adjacent the sacrificial gate structure, performing at least one etching process to remove the portions of the fin structure positioned laterally outside of the sidewall spacer so as to thereby define a fin cavity in the source/drain regions of the device and to expose edges of the fin structure positioned under the sidewall spacer, and performing an epitaxial deposition process to form an epi etch stop layer on the exposed edges of the fin structure positioned under the sidewall spacer and within the fin cavity.
Abstract:
One illustrative device disclosed herein includes a fin defined in a semiconductor substrate having a crystalline structure, wherein at least a sidewall of the fin is positioned substantially in a crystallographic direction of the substrate, a gate structure positioned around the fin, an outermost sidewall spacer positioned adjacent opposite sides of the gate structure, and an epi semiconductor material formed around portions of the fin positioned laterally outside of the outermost sidewall spacers in the source/drain regions of the device, wherein the epi semiconductor material has a substantially uniform thickness along the sidewalls of the fin.
Abstract:
Fin field effect transistor integrated circuits and methods for producing the same are provided. A fin field effect transistor integrated circuit includes a plurality of fins extending from a semiconductor substrate. Each of the plurality of fins includes a fin sidewall, and each of the plurality of fins extends to a fin height such that a trough with a trough base is defined between adjacent fins. A second dielectric is positioned within the trough, where the second dielectric directly contacts the semiconductor substrate at the trough base. The second dielectric extends to a second dielectric height less than the fin height such that protruding fin portions extend above the second dielectric. A first dielectric is positioned between the fin sidewall and the second dielectric.
Abstract:
Structures for a grating coupler and methods of fabricating a structure for a grating coupler. A silicide layer is formed on a patterned section of a semiconductor layer. The grating structures of a grating coupler are formed over the silicide layer and the section of the semiconductor layer.