Abstract:
Semiconductor devices and methods of fabricating the semiconductor devices with chamfer-less via multi-patterning are disclosed. One method includes, for instance: obtaining an intermediate semiconductor device; performing a trench etch into a portion of the intermediate semiconductor device to form a trench pattern; depositing an etching stack; performing at least one via patterning process; and forming at least one via opening into a portion of the intermediate semiconductor device. An intermediate semiconductor device is also disclosed.
Abstract:
Measurement of thickness of layers of a circuit structure is obtained, where the thickness of the layers is measured using an optical critical dimension (OCD) measurement technique, and the layers includes a high-k layer and an interfacial layer. Measurement of thickness of the high-k layer is separately obtained, where the thickness of the high-k layer is measured using a separate measurement technique from the OCD measurement technique. The separate measurement technique provides greater decoupling, as compared to the OCD measurement technique, of a signal for thickness of the high-k layer from a signal for thickness of the interfacial layer of the layers. Characteristics of the circuit structure, such as a thickness of the interfacial layer, are ascertained using, in part, the separately obtained thickness measurement of the high-k layer.
Abstract:
Approaches for providing a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. A previously deposited amorphous carbon layer can be removed from over a mandrel that has been previously formed on a subset of a substrate, such as using a photoresist. A pad hardmask can be formed over the mandrel on the subset of the substrate. This formation results in the subset of the substrate having the pad hardmask covering the mandrel thereon and the remainder of the substrate having the amorphous carbon layer covering the mandrel thereon. This amorphous carbon layer can be removed from over the mandrel on the remainder of the substrate, allowing a set of fins to be formed therein while the amorphous carbon layer keeps the set of fins from being formed in the portion of the substrate that it covers.
Abstract:
Approaches for providing a substrate having a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device comprises a finned substrate, and a planar metrology pad formed on the substrate adjacent the fins in a metrology measurement area of the FinFET device. Processing steps include forming a first hardmask over the substrate, forming a photoresist over a portion of the first hardmask in the metrology measurement area of the FinFET device, removing the first hardmask in an area adjacent the metrology measurement area remaining exposed following formation of the photoresist, patterning a set of openings in the substrate to form the set of fins in the FinFET device in the area adjacent the metrology measurement area, depositing an oxide layer over the FinFET device, and planarizing the FinFET device to form the planar metrology pad in the metrology measurement area.
Abstract:
One method disclosed herein includes, prior to forming an isolation region in a semiconducting substrate for the device, forming a doped well region and a doped punch-stop region in the substrate, introducing a dopant material that is adapted to retard diffusion of boron or phosphorous into the substrate to form a dopant-containing layer proximate an upper surface of the substrate, performing an epitaxial deposition process to form an undoped semiconducting material above the dopant-containing layer, forming a plurality of spaced-apart trenches that extend at least partially into the substrate, wherein the trenches define a fin for the device comprised of at least the undoped semiconducting material, forming at least a local isolation insulating material in the trenches, and forming a gate structure around at least the undoped semiconducting material, wherein a bottom of a gate electrode is positioned approximately level with or below a bottom of the undoped semiconducting material.
Abstract:
One method disclosed herein includes, prior to forming an isolation region in a semiconducting substrate for the device, forming a doped well region and a doped punch-stop region in the substrate, introducing a dopant material that is adapted to retard diffusion of boron or phosphorous into the substrate to form a dopant-containing layer proximate an upper surface of the substrate, performing an epitaxial deposition process to form an undoped semiconducting material above the dopant-containing layer, forming a plurality of spaced-apart trenches that extend at least partially into the substrate, wherein the trenches define a fin for the device comprised of at least the undoped semiconducting material, forming at least a local isolation insulating material in the trenches, and forming a gate structure around at least the undoped semiconducting material, wherein a bottom of a gate electrode is positioned approximately level with or below a bottom of the undoped semiconducting material.