摘要:
A solar cell includes an insulating or semi-insulating substrate having a pair of through holes, an n type semiconductor layer disposed on the front surface of the substrate, and a p type semiconductor layer disposed on the substrate in the first hole and on the n type semiconductor layer. An n side electrode is formed on the surface of the n type semiconductor layer in the second hole and also on a part of the back surface of the substrate. A p side electrode is formed on the surface of the p type semiconductor layer in the first hole and also on the back surface of the substrate. In connecting a plurality of solar cells in a wafer in series, a trench reaching the substrate is formed between adjacent solar cells.
摘要:
A method for improving a performance of a heterojunction bipolar transistor is provided. The method includes steps of providing a substrate; forming a first at least one semiconductor layer on the substrate; forming a second at least one semiconductor layer on the first at least one semiconductor layer; and inserting a thermal treatment process within the second at least one semiconductor layer so as to improve a performance of the heterojuntion bipolar transistor. Furthermore, the thermal treatment process is performed at a temperature ranged from 300° C. to 800° C.
摘要:
In a field effect transistor including active layers having a heterojunction structure with at least two different semiconductor materials, a layer for supplying electrons is disposed opposite a drain electrode, in contact with a region of the active layers including a dopant impurity producing n type conductivity. Therefore, degradation of the electrical characteristics caused by trapping of electrons in a drain ohmic contact layer due to fluorine diffusing into the semiconductor layers is suppressed by supplying electrons from the layer opposite the drain electrode, thereby improving reliability of the field effect transistor including the heterojunction structure.
摘要:
A field effect transistor includes a semi-insulating III-V compound semiconductor substrate; a channel layer disposed on the substrate; an n type electron supply layer disposed on the channel layer and comprising a mixed crystalline compound semiconductor layer including AlAs; an n type ohmic contact layer disposed on the electron supply layer; source and drain electrodes disposed on the ohmic contact layer; an opening in a region between the source and drain electrodes penetrating the ohmic contact layer; a gate electrode disposed in the opening and making a Schotty contact; and a surface protection film of a semiconductor material free of Al, In, and As, covering the opening except where the gate electrode is present. Fluorine is prevented from getting into the electron supply layer with no increase in transconductance or source resistance by providing a layer between the source and a channel, and between the gate and the channel.
摘要:
A semiconductor light emitting device includes an Si substrate having opposed front and rear surfaces; an amorphous or polycrystalline first buffer layer disposed on the front surface of the Si substrate; and GaN series compound semiconductor layers successively disposed on the first buffer layer and including a light emitting region where light is produced by recombination of electrons and holes. In this light emitting device, since the Si substrate is cleavable, it is possible to produce resonator facets by cleaving. In addition, since the Si substrate is electrically conductive, a structure in which a pair of electrodes are respectively located on opposed upper and lower surfaces of the light emitting device is realized. Further, since the Si substrate is inexpensive, the light emitting device is obtained at low cost. Furthermore, since the amorphous or polycrystalline first buffer layer is disposed on the Si substrate, in the initial state of the growth of the GaN series compound semiconductor layers, plenty of growth nuclei are created, and the growth nuclei promote two-dimensional growth. As a result, high-quality GaN series compound semiconductor layers are obtained.
摘要:
A method of manufacturing a semiconductor layer includes preparing a first semiconductor substrate; forming an etching stop layer on the surface of the first substrate; forming an active layer on the etching stop layer; forming a crystal defect reducing layer on the active layer; preparing a second semiconductor substrate having a heat conductivity higher than the heat conductivity of the first substrate; bonding the crystal defect reducing layer to the second substrate; selectively etching the first substrate to expose the etching stop layer; selectively etching the etching stop layer to expose the active layer, whereby the active layer is disposed on the second substrate with the crystal defect reducing layer therebetween. The heat dissipation property is significantly improved by the second substrate having a high heat conductivity and by reducing the thicknesses of the active layer and the crystal defect reducing layer. In addition, good crystallinity of the active layer and sufficient mechanical strength of the substrate are obtained.
摘要:
A semiconductor laser for producing visible light includes a first conductivity type semiconductor substrate; a first conductivity type semiconductor first cladding layer, a semiconductor active layer of GaAs.sub.1-y P.sub.y (y.ltoreq.0.45), and a second conductivity type second cladding layer, the first cladding layer, the active layer, and the second cladding layer being successively disposed on the semiconductor substrate, the first and second cladding layers having substantially the same composition and a different composition from the active layer, thereby forming heterojunctions with the active layer, and having a lattice constant different from the lattice constant of the active layer and introducing stress into the active layer without producing dislocations in the active layer; and first and second electrodes electrically connected to the substrate and the second cladding layer, respectively.