Abstract:
A memory controller issues a targeted refresh command in response to detection by a distributed detector. A memory device includes detection logic that monitors for a row hammer event, which is a threshold number of accesses to a row within a time threshold that can cause data corruption to a physically adjacent row (a “victim” row). The memory device sends an indication of the row hammer event to the memory controller. In response to the row hammer event indication, the memory controller sends one or more commands to the memory device to cause the memory device to perform a targeted refresh that will refresh the victim row.
Abstract:
A method performed by a memory is described. The method includes sensing first bits from a first activated column associated with a first sub-word line structure simultaneously with the sensing of second bits from a second activated column associated with a second sub-word line structure. The method also includes providing the first bits at a same first bit location within different read words of a burst read sequence and providing the second bits at a same second bit location within the different read words of the burst read sequence.
Abstract:
Devices, systems, and methods include an active mode to accommodate read/write operations of a memory device and a self-refresh mode to accommodate recharging of voltage levels representing stored data when read/write operations are idle. At least one register source provides a first voltage level and a second voltage level that is less than the first voltage level. With such a configuration, during the active mode, the memory device operates at the first voltage level as provided by the at least one register source, and during the self-refresh mode, the memory device operates at the second voltage level as provided by the at least one register source.
Abstract:
A memory controller issues a targeted refresh command. A specific row of a memory device can be the target of repeated accesses. When the row is accessed repeatedly within a time threshold (also referred to as “hammered” or a “row hammer event”), physically adjacent row (a “victim” row) may experience data corruption. The memory controller receives an indication of a row hammer event, identifies the row associated with the row hammer event, and sends one or more commands to the memory device to cause the memory device to perform a targeted refresh that will refresh the victim row.
Abstract:
In a memory system a multichip memory provides data redundancy for error recovery. The multichip memory can be an integrated circuit package with multiple memory dies or memory devices integrated with a common package. The multiple memory dies are coupled in a daisy chain, and can be a vertical stack or in a planar formation. The memory chip or chips at the end of the chain store parity data, and the other devices store data. The multichip memory includes XOR (exclusive OR) logic to compute parity to store in the redundant parity chips.
Abstract:
Techniques and mechanisms to provide selective access to data error information by a memory controller. In an embodiment, a memory device stores a first value representing a baseline number of data errors determined prior to operation of the memory device with the memory controller. Error detection logic of the memory device determines a current count of data errors, and calculates a second value representing a difference between the count of data errors and the baseline number of data errors. The memory device provides the second value to the memory controller, which is unable to identify that the second value is a relative error count. In another embodiment, the memory controller is restricted from retrieving the baseline number of data errors.
Abstract:
Techniques and mechanisms to provide write access to a memory device. In an embodiment, a memory controller sends commands to a memory device which comprises multiple memory banks. The memory controller further sends a signal specifying that the commands include back-to-back write commands each to access the same memory bank. In response to the signal, the memory device buffers first data of a first write command, wherein the first data is buffered at least until the memory device receives second data of a second write command. Error correction information is calculated for a combination of the first data and second data, and the combination is written to the memory bank. In another embodiment, buffering of the first data and combining of the first data with the second data is performed, based on the signal from the memory controller, in lieu of read-modify-write processing of the first data.
Abstract:
A check bit read mode enables a memory device to provide internal check bits to an associated host. A memory controller of a memory subsystem can generate one or more read commands for memory devices of the memory subsystem. The read command can include address location information. The memory devices include memory arrays with memory locations addressable with the address location information. The memory locations have associated data and internal check bits, where the check bits are generated internally by the memory for error correction. If the memory device is configured for check bit read mode, in response to the read command, it sends the internal check bits associated with the identified address location. If the memory device is not configured check bit read mode, it returns the data in response to the read command without exposing the internal check bits.
Abstract:
Memory subsystem refresh management enables commands to access one or more identified banks across different bank groups with a single command. Instead of sending commands identifying a bank or banks in separate bank groups by each bank group individually, the command can cause the memory device to access banks in different bank groups. The command can be a refresh command. The command can be a precharge command.
Abstract:
Disclosed embodiments may include an apparatus having a segment wordline enable coupled to logic to selectively disable ones of a number of segment wordline drivers. The logic may partition a page of the apparatus to reduce power consumed through activation of the disabled ones of the number of segment wordlines. Other embodiments may be disclosed.