Atomic layer deposition of metal-oxide tunnel barriers using optimized oxidants
    21.
    发明申请
    Atomic layer deposition of metal-oxide tunnel barriers using optimized oxidants 有权
    使用优化的氧化剂沉积金属氧化物隧道屏障的原子层

    公开(公告)号:US20150179917A1

    公开(公告)日:2015-06-25

    申请号:US14138656

    申请日:2013-12-23

    CPC classification number: H01L39/2493

    Abstract: Metal oxide tunnel barrier layers for superconducting tunnel junctions are formed by atomic layer deposition. Both precursors include a metal (which may be the same metal or may be different). The first precursor is a metal alkoxide with oxygen bonded to the metal, and the second precursor is an oxygen-free metal precursor with an alkyl-reactive ligand such as a halogen or methyl group. The alkyl-reactive ligand reacts with the alkyl group of the alkoxide, forming a detached by-product and leaving a metal oxide monolayer. The temperature is selected to promote the reaction without causing the metal alkoxide to self-decompose. The oxygen in the alkoxide precursor is bonded to a metal before entering the chamber and remains bonded throughout the reaction that forms the monolayer. Therefore, the oxygen used in this process has no opportunity to oxidize the underlying superconducting electrode.

    Abstract translation: 用于超导隧道结的金属氧化物隧道势垒层通过原子层沉积形成。 两种前体包括金属(其可以是相同的金属或可以是不同的)。 第一种前体是具有与金属键合的金属醇盐,第二种前体是具有烷基反应性配体如卤素或甲基的无氧金属前体。 烷基反应性配体与醇盐的烷基反应,形成分离的副产物并留下金属氧化物单层。 选择温度以促进反应而不导致金属醇盐自分解。 在进入室之前,醇盐前体中的氧被结合到金属上,并且在形成单层的整个反应中保持结合。 因此,该方法中使用的氧气没有氧化下面的超导电极的机会。

    Methods for Rapid Generation of ALD Saturation Curves Using Segmented Spatial ALD
    24.
    发明申请
    Methods for Rapid Generation of ALD Saturation Curves Using Segmented Spatial ALD 审中-公开
    使用分段空间ALD快速生成ALD饱和曲线的方法

    公开(公告)号:US20150176124A1

    公开(公告)日:2015-06-25

    申请号:US14135266

    申请日:2013-12-19

    CPC classification number: C23C16/45551

    Abstract: Systems and methods for rapid generation of ALD saturation curves using segmented spatial ALD are disclosed. Methods include introducing a substrate, having a plurality of substrate segment regions, into a processing chamber. The substrate may be disposed upon a pedestal within the chamber. Sequentially exposing the plurality of segment regions to a precursor within the chamber at a first processing temperature. Afterwards, purging the precursor from the chamber and then sequentially exposing each plurality of segment regions to a reactant within the chamber at the first processing temperature. Afterwards, purging the reactant from the chamber. Repeat sequentially exposing the plurality of segment regions to the precursor and the reactant for a plurality of cycles. Each segment region may be sequentially exposed to the precursor for a unique processing time. The pedestal may be rotated prior to exposing each next segment region to the precursor and the reactant.

    Abstract translation: 公开了使用分段空间ALD快速产生ALD饱和曲线的系统和方法。 方法包括将具有多个衬底段区域的衬底引入处理室。 衬底可以设置在腔室内的基座上。 在第一处理温度下将多个区段区域顺序暴露于室内的前体。 然后,从室中吹扫前体,然后在第一处理温度下将每个多个区段顺序地暴露于室内的反应物。 之后,从反应室中清除反应物。 重复连续暴露多个段区域到前体和反应物多个循环。 每个段区域可以顺序地暴露于前体以获得独特的处理时间。 在将每个下一个区段暴露于前体和反应物之前,基座可以旋转。

    UV treatment for ALD film densification
    25.
    发明申请
    UV treatment for ALD film densification 审中-公开
    紫外线治疗ALD膜致密化

    公开(公告)号:US20150064361A1

    公开(公告)日:2015-03-05

    申请号:US14018112

    申请日:2013-09-04

    CPC classification number: C23C16/45536 C23C16/45527

    Abstract: Irradiation with ultraviolet (UV) light during atomic layer deposition (ALD) can be used to cleave unwanted bonds on the layer being formed (e.g., trapped precursor ligands or process-gas molecules). Alternatively, the UV irradiation can be used to excite the targeted bonds so they may be more easily cleaved by other means. The use of UV may enable the formation of low-defect-density films at lower deposition temperatures (e.g.,

    Abstract translation: 可以使用在原子层沉积(ALD)期间用紫外线(UV)光照射在所形成的层(例如,捕获的前体配体或工艺气体分子)上切割不需要的键。 或者,可以使用UV照射来激发目标键,使得它们可以通过其它方式更容易地被切割。 使用UV可以在较低的沉积温度(例如<250℃)下形成低缺陷密度的膜,或者减少对高温后沉积退火的需要,从而提高在热处理后形成的器件的质量, 敏感材料如锗。

    Nucleation Interface for High-K Layer on Germanium
    26.
    发明申请
    Nucleation Interface for High-K Layer on Germanium 有权
    锗上高K层的成核界面

    公开(公告)号:US20140252565A1

    公开(公告)日:2014-09-11

    申请号:US14198480

    申请日:2014-03-05

    Abstract: A germanium-containing semiconductor surface is prepared for formation of a dielectric overlayer (e.g., a thin layer of high-k gate dielectric) by (1) removal of native oxide, for example by wet cleaning, (2) additional cleaning with hydrogen species, (3) in-situ formation of a controlled monolayer of GeO2, and (4) in-situ deposition of the dielectric overlayer to prevent uncontrolled regrowth of native oxide. The monolayer of GeO2 promotes uniform nucleation of the dielectric overlayer, but it too thin to appreciably impact the effective oxide thickness of the dielectric overlayer.

    Abstract translation: 制备含锗的半导体表面,用于通过(1)去除天然氧化物,例如通过湿法清洁来形成电介质覆盖层(例如,高k栅极电介质的薄层),(2)用氢物质进行额外的清洁 ,(3)原位形成受控单层的GeO 2,以及(4)电介质覆层的原位沉积,以防止天然氧化物的不受控制的再生长。 GeO2的单层促进电介质覆盖层的均匀成核,但它太薄而不能明显影响电介质覆盖层的有效氧化物厚度。

    Low Temperature Deposition of Silicon Containing Layers in Superconducting Circuits

    公开(公告)号:US20170186935A1

    公开(公告)日:2017-06-29

    申请号:US14982307

    申请日:2015-12-29

    Abstract: Provided are superconducting circuits and, more specifically, methods of forming such circuits. A method may involve forming a silicon-containing low loss dielectric (LLD) layer over a metal electrode such that metal carbides at the interface of the LLD layer and electrode. The LLD layer may be formed using chemical vapor deposition (CVD) at a temperature of less than about 500° C. At such a low temperature, metal silicides may not form even though silicon containing precursors may come in contact with metal of the electrode. Silicon containing precursors having silane molecules in which two silicon atoms bonded to each other (e.g., di-silane and tri-silane) may be used at these low temperatures. The LLD layer may include amorphous silicon, silicon oxide, or silicon nitride, and this layer may directly interface one or more metal electrodes. The thickness of LLD layer may be between about 1,000 Angstroms and 10,000 Angstroms.

    Low temperature deposition of low loss dielectric layers in superconducting circuits
    28.
    发明授权
    Low temperature deposition of low loss dielectric layers in superconducting circuits 有权
    超导电路中低损耗介电层的低温沉积

    公开(公告)号:US09455393B1

    公开(公告)日:2016-09-27

    申请号:US14981163

    申请日:2015-12-28

    CPC classification number: H01L39/2493 H01L27/18

    Abstract: Provided are superconducting circuits and method of forming thereof. A superconducting circuit may include a low loss dielectric (LLD) layer formed from one or both of polycrystalline silicon or polycrystalline germanium. The LLD layer may be formed at a low temperature (e.g., less than about 525° C.) using chemical vapor deposition (CVD). Addition of germanium may help to lower the deposition temperature and improve crystallinity of the resulting layer. The LLD layer is formed without adding silicides at the interface of the LLD layer and metal electrode. In some embodiments, an initial layer (e.g., a seed layer or a protective layer) may be formed on a metal electrode prior to forming the LLD layer. For example, the initial layer may include one of zinc sulfide, polycrystalline germanium, or polycrystalline silicon. The initial layer may be deposited at a low pressure (e.g., less than 10 Torr) to ensure higher levels of crystallinity.

    Abstract translation: 提供超导电路及其形成方法。 超导电路可以包括由多晶硅或多晶锗中的一个或两者形成的低损耗电介质(LLD)层。 可以使用化学气相沉积(CVD)在低温(例如,小于约525℃)下形成LLD层。 添加锗可能有助于降低沉积温度并改善所得层的结晶度。 在LLD层和金属电极的界面处不添加硅化物形成LLD层。 在一些实施例中,可以在形成LLD层之前在金属电极上形成初始层(例如种子层或保护层)。 例如,初始层可以包括硫化锌,多晶锗或多晶硅中的一种。 初始层可以以低压(例如,小于10托)沉积以确保更高水平的结晶度。

    Methods for Reducing Interface Contact Resistivity
    30.
    发明申请
    Methods for Reducing Interface Contact Resistivity 审中-公开
    降低界面接触电阻率的方法

    公开(公告)号:US20160093772A1

    公开(公告)日:2016-03-31

    申请号:US14501631

    申请日:2014-09-30

    Abstract: Provided are methods of forming low resistivity contacts. Also provided are devices having such low resistive contacts. A method may include doping the surface of a structure, such as a gallium nitride layer. Specifically, a dopant containing layer is formed on the surface of the structure using, for example, atomic layer deposition (ALD). The dopant may magnesium. In some embodiments, the dopant containing layer also includes nitrogen. A capping layer may be then formed over the dopant containing layer to prevent dopant desorption. The stack including the structure with the dopant containing layer disposed on its surface is then annealed to transfer dopant from the dopant containing layer into the surface. After annealing, any remaining dopant containing layer is removed. When another component is later formed over the surface, a low resistivity contact is created between this other component and the doped structure.

    Abstract translation: 提供形成低电阻率接触的方法。 还提供了具有这种低电阻触点的装置。 一种方法可以包括掺杂诸如氮化镓层的结构的表面。 具体地,使用例如原子层沉积(ALD)在结构的表面上形成掺杂剂层。 掺杂剂可以是镁。 在一些实施例中,含掺杂剂层还包括氮。 然后可以在含掺杂剂层上形成覆盖层以防止掺杂剂解吸。 包括具有设置在其表面上的含掺杂剂层的结构的堆叠然后被退火以将掺杂剂从掺杂剂层转移到表面中。 退火后,除去任何剩余的含掺杂剂层。 当在表面上稍后形成另一个部件时,在该另一部件与掺杂结构之间产生低电阻接触。

Patent Agency Ranking