Abstract:
Non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. The metal oxide switches using bulk-mediated switching, has a bandgap greater than 4 electron volts (eV), has a set voltage for a set operation of at least one volt per one hundred angstroms of a thickness of the metal oxide, and has a leakage current density less than 40 amps per square centimeter (A/cm2) measured at 0.5 volts (V) per twenty angstroms of the thickness of the metal oxide.
Abstract:
Control elements that can be suitable for nonvolatile memory device applications are disclosed. The control element can have low leakage currents at low voltages to reduce sneak current paths for non-selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. The control element can be based on multilayer dielectric stacks. The control element can include a titanium oxide-carbon-doped silicon-titanium oxide multilayer stack. Electrode materials may include one of ruthenium, titanium nitride, or carbon. The titanium oxide layers may be replaced by one of zirconium oxide, hafnium oxide, aluminum oxide, magnesium oxide, or a lanthanide oxide.
Abstract:
A resistive-switching memory element is described. The memory element includes a first electrode, a porous layer over the first electrode including a point defect embedded in a plurality of pores of the porous layer, and a second electrode over the porous layer, wherein the nonvolatile memory element is configured to switch between a high resistive state and a low resistive state.
Abstract:
Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.
Abstract:
Metal-oxide films (e.g., aluminum oxide) with low leakage current suitable for high-k gate dielectrics are deposited by atomic layer deposition (ALD). The purge time after the metal-deposition phase is 5-15 seconds, and the purge time after the oxidation phase is prolonged beyond 60 seconds. Prolonging the post-oxidation purge produced an order-of-magnitude reduction of leakage current in 30 Å-thick Al2O3 films.
Abstract:
According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
Abstract:
According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
Abstract:
According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
Abstract:
In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
Abstract:
Non-volatile resistive-switching memories formed using anodization are described. A method for forming a resistive-switching memory element using anodization includes forming a metal containing layer, anodizing the metal containing layer at least partially to form a resistive switching metal oxide, and forming a first electrode over the resistive switching metal oxide. In some examples, an unanodized portion of the metal containing layer may be a second electrode of the memory element.