Abstract:
Structures and methods of making a dielectric region in a bulk silicon (Si) substrate of a mixed-signal integrated circuit (IC) provide a high-Q passive resonator. Deep trenches within the bulk Si substrate in directions are expanded by wet etching to form contiguous cavities, which are filled by Si oxide to form a dielectric region. The dielectric region enhances the quality (Q) of an overlying passive resonator, formed in metallization layers of the mixed-signal IC.
Abstract:
Various embodiments include field effect transistors (FETs) and methods of forming such FETs. One method includes: forming a first set of openings in a precursor structure having: a silicon substrate having a crystal direction, the silicon substrate substantially abutted by a first oxide; a silicon germanium (SiGe) layer overlying the silicon substrate; a silicon layer overlying the SiGe layer; a second oxide overlying the silicon layer; and a sacrificial layer overlying the second oxide, wherein the first set of openings each expose the silicon substrate; undercut etching the silicon substrate in a direction perpendicular to the crystal direction of the silicon substrate to form a trench corresponding with each of the first set of openings; passivating exposed surfaces of at least one of the SiGe layer or the silicon layer in the first set of openings; and at least partially filling each trench with a dielectric.
Abstract:
A low capacitance density, high voltage MIM capacitor and the high density MIM capacitor and a method of manufacture are provided. The method includes depositing a plurality of plates and a plurality of dielectric layers interleaved with one another. The method further includes etching a portion of an uppermost plate of the plurality of plates while protecting other portions of the uppermost plate. The protected other portions of the uppermost plate forms a top plate of a first metal-insulator-metal (MIM) capacitor and the etching exposes a top plate of a second MIM capacitor.
Abstract:
Methods for bonding substrate surfaces, bonded substrate assemblies, and design structures for a bonded substrate assembly. Device structures of a product chip are formed using a first surface of a device substrate. A wiring layer of an interconnect structure for the device structures is formed on the product chip. The wiring layer is planarized. A temporary handle wafer is removably bonded to the planarized wiring layer. In response to removably bonding the temporary handle wafer to the planarized first wiring layer, a second surface of the device substrate, which is opposite to the first surface, is bonded to a final handle substrate. The temporary handle wafer is then removed from the assembly.
Abstract:
A low harmonic radio-frequency (RF) switch in a silicon-on-insulator (SOI) substrate and methods of manufacture. A method includes forming at least one trench through an insulator layer. The at least one trench is adjacent a device formed in an active region on the insulator layer. The method also includes forming at least one cavity in a substrate under the insulator layer and extending laterally from the at least one trench to underneath the device.