摘要:
This disclosure is related to post processing steps for integrating of micro devices into system (receiver) substrate or improving the performance of the micro devices after transfer. Post processing steps for additional structure such as reflective layers, fillers, black matrix or other layers may be used to improve the out coupling or confining of the generated LED light. In another example, dielectric and metallic layers may be used to integrate an electro-optical thin film device into the system substrate with the transferred micro devices. In another example, color conversion layers are integrated into the system substrate to create different output from the micro devices.
摘要:
An industrial-scale system and method for handling precisely aligned and centered semiconductor substrate (e.g., wafer) pairs for substrate-to-substrate (e.g., wafer-to-wafer) aligning and bonding applications is provided. Some embodiments include an aligned substrate transport device having a frame member and a spacer assembly. The centered semiconductor substrate pairs may be positioned within a processing system using the aligned substrate transport device, optionally under robotic control. The centered semiconductor substrate pairs may be bonded together without the presence of the aligned substrate transport device in the bonding device. The bonding device may include a second spacer assembly which operates in concert with that of the aligned substrate transport device to perform a spacer hand-off between the substrates. A pin apparatus may be used to stake the substrates during the hand-off.
摘要:
An industrial-scale apparatus, system, and method for handling precisely aligned and centered semiconductor wafer pairs for wafer-to-wafer aligning and bonding applications includes an end effector having a frame member and a floating carrier connected to the frame member with a gap formed therebetween, wherein the floating carrier has a semi-circular interior perimeter. The centered semiconductor wafer pairs are positionable within a processing system using the end effector under robotic control. The centered semiconductor wafer pairs are bonded together without the presence of the end effector in the bonding device.
摘要:
According to at least one embodiment of the present invention, a wafer-to-wafer semiconductor device includes a first wafer substrate having a first bonding layer formed on a first bulk substrate layer. A second wafer substrate includes a second bonding layer formed on a second bulk substrate layer. The second bonding layer is bonded to the first bonding layer to define a bonding interface. At least one of the first wafer substrate and the second wafer substrate includes a crack-arresting film layer configured to increase a bonding energy of the bonding interface.
摘要:
Semiconductor devices having stacked structures and methods for fabricating the same are provided. A semiconductor device includes at least one single block including a first semiconductor chip and a second semiconductor chip stacked thereon. Each of the first and second semiconductor chips includes a semiconductor substrate including a through-electrode, a circuit layer on a front surface of the semiconductor substrate, and a front pad that is provided in the circuit layer and is electrically connected to the through-electrode. The surfaces of the semiconductor substrates face each other. The circuit layers directly contact each other such that the semiconductor chips are bonded to each other.
摘要:
This disclosure is related to post processing steps for integrating of micro devices into system (receiver) substrate or improving the performance of the micro devices after transfer. Post processing steps for additional structure such as reflective layers, fillers, black matrix or other layers may be used to improve the out coupling or confining of the generated LED light. In another example, dielectric and metallic layers may be used to integrate an electro-optical thin film device into the system substrate with the transferred micro devices. In another example, color conversion layers are integrated into the system substrate to create different output from the micro devices.
摘要:
A chip arranging method for arranging a plurality of chips on a wafer includes a groove forming step of forming a plurality of intersecting grooves that mark off each of chip placement regions on the front surface side of the wafer, a liquid supplying step of supplying a liquid to the chip placement regions, a chip placing step of placing the chips on the liquid to position the chips in the chip placement regions by the surface tension of the liquid after carrying out the liquid supplying step, and a liquid removing step of removing the liquid to arrange the plurality of chips on the wafer after carrying out the chip placing step.
摘要:
Semiconductor devices having stacked structures and methods for fabricating the same are provided. A semiconductor device includes at least one single block including a first semiconductor chip and a second semiconductor chip stacked thereon. Each of the first and second semiconductor chips includes a semiconductor substrate including a through-electrode, a circuit layer on a front surface of the semiconductor substrate, and a front pad that is provided in the circuit layer and is electrically connected to the through-electrode. The surfaces of the semiconductor substrates face each other. The circuit layers directly contact each other such that the semiconductor chips are bonded to each other.
摘要:
A method for bonding a first substrate with a second substrate, characterized in that the first substrate and/or the second substrate is/are thinned before the bonding.
摘要:
A method for bonding of a first contact surface of a first substrate to a second contact surface of a second substrate according to the following steps: forming a reservoir in a surface layer on the first contact surface, at least partially filling the reservoir with a first educt or a first group of educts, contacting the first contact surface with the second contact surface for formation of a prebond connection, and forming a permanent bond between the first and second contact surface, at least partially strengthened by the reaction of the first educt with a second educt contained in a reaction layer of the second substrate.