Abstract:
A network device (e.g., an evolved Node B (eNB), user equipment (UE) or the like) can operate to reduce an interruption time during a fallback operation resulting from a communication link blockage condition (e.g., a human blockage or other natural/physical wireless blockage). The network device includes a network convergence protocol (NCP) layer that enables communication between other network devices of different radio access technologies (RATs) in a heterogeneous network.
Abstract:
Systems and methods for improved inter-frequency measurement are disclosed herein. User equipment (UE) may be configured to communicatively couple to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). The eNB may determine a measurement pattern indicating when the UE should perform inter-frequency measurements. The measurement pattern may be selected such that the UE performs measurements more often than once per measurement cycle. The measurement pattern may be selected to balance timing requirements for the UE with increased power consumption that may result from more frequent measurements. The eNB may determine the measurement pattern based on an estimate of UE speed and a number of frequencies to be monitored. A default pattern may be used if the UE speed and/or number of frequencies do not exceed predetermined thresholds.
Abstract:
Examples are disclosed for facilitating dual connectivity for user equipment (UE) in a wireless network. The examples include establishing a backhaul link between base stations serving as primary and secondary cells for separate UE connections to management or gateway entities for the wireless network. The primary base station may provide macro cell coverage for the one or more UEs while the secondary base station may provide small cell coverage. The two base stations may split at least some protocol stack processing for radio bearers associated with the separate UE connections. Control information may be exchanged through the backhaul link to facilitate the split protocol stack processing. Other examples are described and claimed.
Abstract:
Embodiments of an evolved Node B (eNB) and methods for radio link failure handling for dual connectivity are generally described herein. A method performed by circuitry of a User Equipment (UE) may include connecting, at a UE, to a Master eNB (MeNB) and connecting to a Secondary eNB (SeNB). The method may include determining, at the UE, that one of the connections has a Radio Link Failure and determining at the UE, that the other of the connections remains connected to the UE. The method may include refraining from initiating a Radio Resource Control (RRC) re-establishment procedure while at least one of the connections does not have a radio link failure.
Abstract:
Embodiments of UE and methods for measurement of Reference Signal Received Quality (RSRQ) are generally described herein. The UE may be configured to determine an RSRQ of a serving cell and an RSRQ of a target cell based on an indicated RSRQ measurement type. The measurement type may be received as part of a measurement configuration Information Element (IE) that indicates a first or second RSRQ measurement type. For the first RSRQ measurement type, the RSRQ may be determined based on a Received Signal Strength Indicator (RSSI) over common reference signals (CRS). For the second RSRQ measurement type, the RSRQ may be determined based on an RSSI that is based on a received power of one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols received at the UE.
Abstract:
Embodiments of a User Equipment (UE) to support inter-frequency handover are disclosed herein. The UE may receive, from an Evolved Node-B (eNB), a measurement report configuration message that includes multiple measurement events to be determined at the UE. The UE may transmit a measurement report when a combined measurement event occurs. The combined measurement event may include a combination of the multiple measurement events according to a “logical AND” operator such that the combined measurement event occurs when the multiple measurement events occur. The measurement events may be related to signal measurements performed on one or more signals received at the UE from one or more cells configured for operation in the network.
Abstract:
Embodiments of the present disclosure describe systems, devices and methods for system information acquisition in radio resource connection (RRC) connection reestablishment when Radio Link Failure (RLF) happens. Various embodiments may include a serving cell that provides system information of a neighbor cell to a user equipment (UE). When the UE detects an RLF event, the UE may determine whether the previously received system information is valid and proceed with RRC connection reestablishment based on the determination. Other embodiments may be described or claimed.
Abstract:
Embodiments of an evolved Node B (eNB) and methods for radio link failure handling for dual connectivity are generally described herein. A method performed by circuitry of a User Equipment (UE) may include connecting, at a UE, to a Master eNB (MeNB) and connecting to a Secondary eNB (SeNB). The method may include determining, at the UE, that one of the connections has a Radio Link Failure and determining at the UE, that the other of the connections remains connected to the UE. The method may include refraining from initiating a Radio Resource Control (RRC) re-establishment procedure while at least one of the connections does not have a radio link failure.
Abstract:
Embodiments of a User Equipment (UE), Evolved Node-B (eNB) and methods for communication in accordance with a packet convergence and link control (PCLC) layer are generally described herein. The UE may receive, from a Fifth Generation (5G) eNB, a first group of medium access control (MAC) protocol data units (PDUs) that include PCLC PDUs. In accordance with PCLC sequence numbers (SNs), the UE may reorder the PCLC PDUs and may decipher the PCLC PDUs. The UE may receive, from a legacy eNB, a second group of MAC PDUs that include packet data convergence protocol (PDCP) PDUs encapsulated in radio link control (RLC) PDUs. The UE may reorder the RLC PDUs based on RLC SNs and may decipher the RLC PDUs based on PDCP SNs that are exclusive to the RLC SNs.