Abstract:
A lateral field emission display in which a cathode and anode are laterally arrayed, and a fabricating method thereof, since the micro tip is formed to be sharp through the reactive ion etching method, efficiency of electron emission is better than a conventional wedge-type tip. Also, since focusing of an electron beam is accurately controlled, a relatively low-voltage driving is possible. Further, since the first gate is further provided above the cathode and the anode is formed to be higher than the second gate, a trace control of an electron-beam emitted from the micro tip is easy and focusing efficiency of the emitted electron beam to the anode is also improved.
Abstract:
A method for manufacturing a field emission device includes forming a cathode on a substrate. A semiconductor material layer is formed on the cathode and a mask is formed on the semiconductor material layer. The semiconductor material layer is etched to form tips on the cathode. Each of the tips has an upper portion and a lower portion. An insulating material is deposited on the cathode to form an insulating layer. A first metal is deposited on the insulating layer in a slanted angle direction to form a gate electrode having a protruded edge portion. The mask and the tips are removed to form holes. A second metal is deposited on the gate electrode to form micro-tips in the holes. The second metal is then removed from the gate electrode. The upper portion of the tips may have a cone shape, while the lower portion of the tips may have a column shape. The upper and lower portions of the tips may be formed by two different etching methods. The resulting field emission device may be applied, among other things, to a flat plate display device, an extremely high frequency amplifier, and a sensor. According to the above method, the gate is precisely formed to have an aperture whose size is minute and uniform, thereby lowering a voltage for driving the display.
Abstract:
A method of fabricating a field emission micro-tip which can emit electrons uniformly and can be fabricated at a high yield when applied to a large device. The micro-tip is fabricated such that when the adhesive layer and mask are instantaneously etched the tungsten micro-tips are lifted upwardly due to the differences in internal stress and etching rates of the tungsten cathode, the lower adhesive layer and the upper mask layer. The sharpness of the micro-tip is easily adjusted depending on the shape of the micro-tip. Also, since the internal stress of tungsten and characteristics of the BOE method are utilized throughout the fabricating process, the reproducibility is ensured. Moreover, since multiple tips are fabricated, the output current can be manipulated in a wide range of nanoamperes to milliamperes. Since tungsten is used for fabricating the micro-tips, excellent properties are obtained with regard to strength, oxidation, work function, and electrical, chemical and mechanical durability.
Abstract:
An anti-reflection structure using surface plasmons and a high-k dielectric material, and a method of manufacturing the anti-reflection structure. The anti-reflection structure may include a high-k dielectric layer formed on a substrate, the high-k dielectric layer configured to allow incident light to pass therethrough, and a nano-material layer on the high-k dielectric layer. The high-k dielectric layer may include at least one of zirconium oxide (ZrO2), hafnium oxide (HfO2), titanium oxide (TiO2), tantalum oxide (Ta2O5), lanthanum oxide (La2O3), yttrium oxide (Y2O3) and aluminum oxide (Al2O3).
Abstract translation:使用表面等离子体激元和高k介电材料的抗反射结构,以及制造抗反射结构的方法。 抗反射结构可以包括形成在基板上的高k电介质层,配置成允许入射光通过的高k电介质层,以及在高k电介质层上的纳米材料层。 高k电介质层可以包括氧化锆(ZrO 2),氧化铪(HfO 2),氧化钛(TiO 2),氧化钽(Ta 2 O 5),氧化镧(La 2 O 3),氧化钇(Y 2 O 3)和氧化铝 (Al2O3)。
Abstract:
An electromagnetic wave transmission filter may include a substrate and one or more coils. The one or more coils may be at least partly disposed in an opening through the substrate. An electromagnetic camera may include an electromagnetic wave detector array, including a plurality of detector cells for detecting electromagnetic waves, and an electromagnetic wave transmission filter disposed in front of the electromagnetic wave detector array to provide each of the detector cells with an electromagnetic wave of a certain wavelength. The electromagnetic wave transmission filter may includes a substrate and a plurality of coils. At least one of the plurality of coils may be at least partly disposed in each of a plurality of openings through the substrate.
Abstract:
An inkjet printhead includes an ink flow channel including a pressure chamber, a nozzle to communicate with the pressure chamber, an actuator to provide a driving force to eject ink from the pressure chamber, and a plurality of electrodes, a lower voltage is applied to an electrode closer to the nozzle as compared to an electrode farther from the nozzle to form a non-uniform electric field in the ink flow channel, and a method of removing bubbles in the inkjet printhead.
Abstract:
An integral imaging system may include a lens unit. The lens unit may include a first substrate; a second substrate; a first electrode on the first substrate; a second electrode on the second substrate; a liquid crystal layer between the first and second substrates; and an array of nanostructures protruding from the first substrate into the liquid crystal layer. The first and second electrodes may be configured to apply one or more voltages to the array of nanostructures. When the one or more voltages are applied to the array of nanostructures, one or more electric fields may be formed between the array of nanostructures and the second electrode, varying an arrangement of molecules in the liquid crystal layer and forming a refractive index distribution in the liquid crystal layer.
Abstract:
Provided is a genotyping method. The genotyping method includes using a DNA chip on which just an optimal probe set is immobilized, the optimal probe sets composed of a discriminating probe which perfectly matches a mutant type gene or a wild type gene for each of at least one identified mutation site in each of at least one amplicon contained in a sample and an amplicon probe having a sequence which perfectly matches a region excluding a nucleotide sequence at a mutation site in each amplicon and is absent from the other amplicons, in order to identify which one of a wild type gene and a mutant type gene is present in each mutation site. In this genotyping method, the number of probes used can be reduced and reliability of genotyping results can be increased.
Abstract:
A field emission type backlight device can include upper and lower substrates facing each other with a gap between them, an anode electrode on a lower side of the upper substrate, a fluorescent layer on a lower side of the anode electrode, a lower gate electrode on an upper side of the lower substrate, an insulating layer on an upper side of the lower gate electrode, a cathode electrode on an upper side of the insulating layer, and a gate electrode that is provided on an upper side of the insulating layer and electrically connected to the lower gate electrode.
Abstract:
A flash memory management method is provided. According to the method, when a request to write the predetermined data to a page to which data has been written is made, the predetermined data is written to a log block corresponding to a data block containing the page. When a request to write the predetermined data to the page again is received, the predetermined data is written to an empty free page in the log block. Even if the same page is requested to be continuously written to, the management method allows this to be processed in one log block, thereby improving the effectiveness in the use of flash memory resources.