摘要:
In a light emitting diode package or a light emitting diode, a cover body having an opening with a reflecting surface is attached on an upper portion of a base body on which a light emitting diode element is mounted. The base body is formed of alumina ceramics having a pore diameter of 0.10 to 1.25 μm or a porosity of 10% or more, and a thermal via is formed in the base body. Accordingly, it is possible to improve luminance and heat radiating characteristics of the light emitting diode package and the light emitting diode which uses alumina ceramics.
摘要:
A light emitting device having an emitting element and an element mounting portion on which the emitting element is mounted. The element mounting portion is formed of aluminum nitride.
摘要:
An insulation film 150 made of SiO2 is formed on a p-layer 106, and a multiple thick film positive electrode 120, which is a metal film formed through metal deposition, is formed on the insulation film 150 and on the p-type layer 106 at the central portion of which has a window and is exposed. The insulation film 150 has a thickness of one fourth multiple of emission wavelength. Thickness of the insulation film 150 is generally determined by multiplying one fourth of intramedium emission wavelength by an odd number. By interference effect, directivity of radiated light along the optical axis direction can be improved.
摘要:
An insulation film 150 made of SiO2 is formed on a p-type layer 106, and a multiple thick film positive electrode 120, which is a metal film formed through metal deposition, is formed on the insulation film 150 and on the p-type layer 106 at the central portion of which has a window and is exposed. The insulation film 150 has a thickness of one fourth multiple of emission wavelength. Thickness of the insulation film 150 is generally determined by multiplying one fourth of intramedium emission wavelength by an odd number. By interference effect, directivity of radiated light along the optical axis direction can be improved.
摘要:
A method including the steps of: modifying at least one part of a sapphire substrate by dry etching to thereby form any one of a dot shape, a stripe shape, a lattice shape, etc. as an island shape on the sapphire substrate; forming an AlN buffer layer on the sapphire substrate; and epitaxially growing a desired Group III nitride compound semiconductor vertically and laterally so that the AlN layer formed on a modified portion of the surface of the sapphire substrate is covered with the desirably Group III nitride compound semiconductor without any gap while the AlN layer formed on a non-modified portion of the surface of the sapphire substrate is used as a seed, wherein the AlN buffer layer is formed by means of reactive sputtering with Al as a target in an nitrogen atmosphere.
摘要:
A semiconductor light emitting element that is made by using the lateral growth function of semiconductor crystal while providing an ELO mask on a crystal growth surface of a crystal growth substrate. At least part of a sidewall of the ELO mask is provided with an inclined plane that is inclined to the crystal growth surface such that the semiconductor crystal to be formed on the ELO mask substantially has no void.
摘要:
The present invention provides a lamp that includes a reflection case and a light emitting element. A central portion of a lower wall inner face of the reflection case is stepwise lowered to form a lower wall enlarged inner face, and both faces are made continuous with each other through right and left perpendicular hanging inner faces, so that a central portion of a back wall inner face and a front opening are downwardly enlarged in a rectangular shape, respectively. The light emitting element is mounted on a front face of a sub mount table. A back face of the sub mount table is fixed to the central portion of the back wall inner face, and right and left end faces of the sub mount table are positioned to right and left perpendicular hanging inner faces when the sub mount table is fixed.
摘要:
A method including the steps of: modifying at least one part of a sapphire substrate by dry etching to thereby form any one of a dot shape, a stripe shape, a lattice shape, etc. as an island shape on the sapphire substrate; forming an AlN buffer layer on the sapphire substrate; and epitaxially growing a desired Group III nitride compound semiconductor vertically and laterally so that the AlN layer formed on a modified portion of the surface of the sapphire substrate is covered with the desirably Group III nitride compound semiconductor without any gap while the AlN layer formed on a non-modified portion of the surface of the sapphire substrate is used as a seed, wherein the AlN buffer layer is formed by means of reactive sputtering with Al as a target in an nitrogen atmosphere.