Abstract:
A device includes a memory. The device also includes a controller. The controller includes a register configured to store an indication of whether an ability of a received command to alter an access protection scheme of the memory is enabled. The received command may alter the access an access protection scheme of the memory responsive to the indication.
Abstract:
A non volatile memory device includes a first buffer register configured to receive and store the data to be stored into the memory device provided via a memory bus. A command window is activatable for interposing itself for access to a memory matrix between the first buffer element and the memory matrix. The command window includes a second buffer element that stores data stored in or to be stored into a group of memory elements. A first data transfer means executes a first transfer of the data stored in the second buffer register into the first buffer register during a first phase of a data write operation started by the reception of a first command. A second data transfer means receives the data provided by the memory bus and modifies, based on the received data, the data stored in the first buffer register during a second phase of the data write operation started by the reception of a second command. The first transfer means execute a second transfer of the modified data stored in the first buffer register into the second buffer register during a third phase of the data write operation. The second transfer is executed in response to the reception of a signal received by the memory bus together with the second command.
Abstract:
Subject matter disclosed herein relates to read and write processes of a memory device. During a write process to a particular partition in a memory array, a response to a read request of contents of the particular partition may be delayed. In some embodiments, the contents of the particular partition may be indirectly read during the write process without delaying the response to the read request. The contents of the particular partition can be indirectly read by determining the contents of the particular partition based, at least in part, on an error correction code based, at least in part, on contents of memory partitions of the memory array.
Abstract:
A non volatile memory device includes a first buffer register configured to receive and store the data to be stored into the memory device provided via a memory bus. A command window is activatable for interposing itself for access to a memory matrix between the first buffer element and the memory matrix. The command window includes a second buffer element that stores data stored in or to be stored into a group of memory elements. A first data transfer means executes a first transfer of the data stored in the second buffer register into the first buffer register during a first phase of a data write operation started by the reception of a first command. A second data transfer means receives the data provided by the memory bus and modifies, based on the received data, the data stored in the first buffer register during a second phase of the data write operation started by the reception of a second command. The first transfer means execute a second transfer of the modified data stored in the first buffer register into the second buffer register during a third phase of the data write operation. The second transfer is executed in response to the reception of a signal received by the memory bus together with the second command.
Abstract:
A system performs operations including: storing a first value in a first memory location used for selecting a sub-channel of a plurality of sub-channels in a communication channel, each of the plurality of sub-channels corresponding to one or more memory components of a plurality of memory components of the memory device, wherein the first value specifies that a sub-channel selecting function is enabled; receiving, through the communication channel, a command directed to the memory device; responsive to receiving the command, storing a second value in a second memory location, wherein the second value is obtained from the command; determining that the second value matches a third value stored in a third memory location, wherein the third value stored in the third memory location comprises a preset value corresponding to a first component of the plurality of components of the memory device; and executing, by the first component, the command.
Abstract:
Methods, systems, and devices for bank-configurable power modes are described. Aspects include operating a memory device that has multiple memory banks in a first mode. While operating in the first mode, the memory device may receive a command to enter a second mode having a lower power consumption level than the first mode. The memory device may enter the second mode by switching a first subset of the memory banks to a first low power mode that operates at a first power consumption level and a second subset of the memory banks to a second low power mode that operates at a second power consumption level that may be lower than the first power consumption level. In some cases, the memory device may switch the first subset of memory banks from the first low power mode while maintaining the second subset of memory banks in the low power mode.
Abstract:
Methods, systems, and devices for bank-configurable power modes are described. Aspects include operating a memory device that has multiple memory banks in a first mode. While operating in the first mode, the memory device may receive a command to enter a second mode having a lower power consumption level than the first mode. The memory device may enter the second mode by switching a first subset of the memory banks to a first low power mode that operates at a first power consumption level and a second subset of the memory banks to a second low power mode that operates at a second power consumption level that may be lower than the first power consumption level. In some cases, the memory device may switch the first subset of memory banks from the first low power mode while maintaining the second subset of memory banks in the low power mode.
Abstract:
Methods, systems, and devices for techniques for indicating row activation are described. A memory device may receive an indication associated with an activation command, which may enable the memory device to begin some aspects of an activation operation before receiving the associated activation command. The indication may include a location of a next row to access as part of the activation command. The indication may be included in a previous activation command or in a precharge command. The memory device may begin activation operations for the next row before the precharge operation of the current row is complete. The memory device may receive the activation command for the next row after receiving the indication, and may complete the activation operations upon receiving the activation command.
Abstract:
Methods and systems include memory devices with a memory array comprising a plurality of memory cells. The memory devices include a control circuit operatively coupled to the memory array and configured to receive a read request for data and to apply a first voltage to the memory array based on the read request. The control circuit is additionally configured to count a total number of the plurality of memory cells that have switched to an active read state based on the first voltage and to apply a second voltage to the memory array based on the total number. The control circuit is further configured to return the data based at least on bits stored in a first and a second set of the plurality of memory cells.
Abstract:
Methods, systems, and devices related to auto-referenced memory cell read techniques are described. The auto-referenced read may encode user data to include a certain number bits having a first logic state prior to storing the user data in memory cells. Subsequently, reading the encoded user data may be carried out by applying a read voltage to the memory cells while monitoring a series of switching events by activating a subset of the memory cells having the first logic state. The auto-referenced read may identify a particular switching event that correlates to a median threshold voltage value of the subset of the memory cells. Then, the auto-referenced read may determine a reference voltage that takes into account a statistical property of threshold voltage distribution of the subset of the memory cells. The auto-referenced read may identify a time duration to maintain the read voltage based on determining the reference voltage. When the time duration expires, the auto-referenced read may determine that the memory cells that have been activated correspond to the first logic state.