Abstract:
Systems, apparatuses, and methods using wire bonds and direct chip attachment (DCA) features in stacked die packages are described. A stacked die package includes a substrate and at least a first semiconductor die and a second semiconductor die that are vertically stacked above the substrate. An active surface of the first semiconductor die faces an upper surface of the substrate and the first semiconductor die is operably coupled to the substrate by direct chip attachment DCA features. A back side surface of the second semiconductor die faces a back side surface of the first semiconductor die. The second semiconductor die is operably coupled to the substrate by wire bonds extending between an active surface thereof and the upper surface of the substrate.
Abstract:
Apparatuses for controlling latencies on input signal paths in semiconductor devices are disclosed. An example apparatus includes: a clock input buffer that provides a reference clock signal and a system clock signal based on an external clock signal; a command decoder that latches command signals with the system clock signal and further provides a signal based on the command signals; and a command delay adjustment circuit including: a clock synchronizing circuit that receives the signal, latches the signal with the system clock signal and provides a clock-synchronized read signal responsive to a shift cycle parameter.
Abstract:
Apparatuses for controlling latencies on input signal paths in semiconductor devices are disclosed. An example apparatus includes: a clock input buffer that provides a reference clock signal and a system clock signal based on an external clock signal; a command decoder that latches command signals with the system clock signal and further provides a signal based on the command signals; and a command delay adjustment circuit including: a clock synchronizing circuit that receives the signal, latches the signal with the system clock signal and provides a clock-synchronized read signal responsive to a shift cycle parameter.
Abstract:
Disclosed herein is a semiconductor device that includes: a memory cell array including a plurality of memory groups each having a plurality of memory cells, the memory groups being selected by mutually different addresses; a first control circuit periodically executing a refresh operation on the memory groups in response to a first refresh command: and a second control circuit setting a cycle of executing the refresh operation by the first control circuit. The second control circuit sets the cycle to a first cycle until executing the refresh operation to all the memory groups after receiving the first refresh command, and the second control circuit sets the cycle, to a second cycle that is longer than the first cycle after executing the refresh operation to all the memory groups.
Abstract:
A device includes a first power supply line supplying a first voltage, first, second, and third nodes, a selection circuit connected between the first power supply line and the first node, a first anti-fuse connected between the first node and the second node, and a second anti-fuse connected between the first node and the third node. The second node and the third node are not connected to each other.
Abstract:
A device includes an output circuit, a DLL (Delay Locked Loop) circuit including a first delay line receiving a first clock signal and outputting, in response to receiving the clock signal, a second clock signal supplied to the output circuit, and an ODT (On Die Termination) circuit receiving an ODT activation signal and outputting, in response to receiving the ODT activation signal, an ODT output signal supplied to the output circuit to set the output circuit in a resistance termination state, and the ODT circuit including a second delay line configured to be set by the DLL circuit in an equivalent delay amount that is equivalent to a delay amount of the first delay line, the ODT output signal being, in a first time-period during which the ODT activation signal is in an active state, generated by being conveyed via the second delay line in which the equivalent delay amount has been set.
Abstract:
A device includes a plurality of input terminals, a control circuit, and a plurality of signal buses. Each of the signal buses is coupled between the control circuit and an associated one of the plurality of input terminals and includes one or more first buffers, one or more second buffers and at least one latch circuit coupled between the one or more first buffers and the one or more second buffers. The one or more first buffers of one of the signal buses are different in number from the one or more first buffers of a different one of the signal buses.
Abstract:
A semiconductor memory disclosed in this disclosure includes first and second memory cell arrays, a first main data line that transfers the read data read from the first memory cell array, a second main data line that transfers the read data read from the second memory cell array, a main amplifier coupled to the second main data line, and a repeater circuit coupled to the first main data line and the second main data line.
Abstract:
Apparatuses for controlling latencies on input signal paths in semiconductor devices are disclosed. An example apparatus includes: a clock input buffer that provides a reference clock signal and a system clock signal based on an external clock signal; a command decoder that latches command signals with the system clock signal and further provides a signal based on the command signals; and a command delay adjustment circuit including: a clock synchronizing circuit that receives the signal, latches the signal with the system clock signal and provides a clock-synchronized read signal responsive to a shift cycle parameter.
Abstract:
An apparatus includes a first terminal configured to communicate data with an outside of the apparatus, a second terminal configured to receive a first power source potential, a third terminal configured to receive a second power source potential lower than the first power source potential, a fourth terminal configured to be coupled to a calibration resistor, an output buffer including first to third nodes coupled to the first to third terminals respectively, and a replica circuit including fourth and fifth nodes coupled to the second and third terminals respectively, and sixth node coupled to the fourth terminal.