摘要:
In a GaN based semiconductor optical device 11a, the primary surface 13a of the substrate 13 tilts at a tilting angle toward an m-axis direction of the first GaN based semiconductor with respect to a reference axis “Cx” extending in a direction of a c-axis of the first GaN based semiconductor, and the tilting angle is 63 degrees or more, and is less than 80 degrees. The GaN based semiconductor epitaxial region 15 is provided on the primary surface 13a. On the GaN based semiconductor epitaxial region 15, an active layer 17 is provided. The active layer 17 includes one semiconductor epitaxial layer 19. The semiconductor epitaxial layer 19 is composed of InGaN. The thickness direction of the semiconductor epitaxial layer 19 tilts with respect to the reference axis “Cx.” The reference axis “Cx” extends in the direction of the [0001] axis. This structure provides the GaN based semiconductor optical device that can reduces decrease in light emission characteristics due to the indium segregation.
摘要:
A method of fabricating a III-nitride semiconductor laser device includes: preparing a substrate with a semipolar primary surface, where the semipolar primary surface includes a hexagonal III-nitride semiconductor; forming a substrate product having a laser structure, an anode electrode, and a cathode electrode, where the laser structure includes a substrate and a semiconductor region, and the semiconductor region is formed on the semipolar primary surface; after forming the substrate product, forming first and second end faces; and forming first and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device on the first and second end faces, respectively.
摘要:
A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device includes a group III nitride semiconductor supporting base, a GaN based semiconductor region, an active layer, and a GaN semiconductor region. The primary surface of the group III nitride semiconductor supporting base is not any polar plane, and forms a finite angle with a reference plane that is orthogonal to a reference axis extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region, grown on the semipolar primary surface, includes a semiconductor layer of, for example, an n-type GaN based semiconductor doped with silicon. A GaN based semiconductor layer of an oxygen concentration of 5×1016 cm−3 or more provides an active layer, grown on the primary surface, with an excellent crystal quality.
摘要:
Provided is a III-nitride semiconductor laser allowing for provision of a low threshold with use of a semipolar plane. A primary surface 13a of a semiconductor substrate 13 is inclined at an angle of inclination AOFF in the range of not less than 50 degrees and not more than 70 degrees toward the a-axis direction of GaN with respect to a reference plane perpendicular to a reference axis Cx along the c-axis direction of GaN. A first cladding layer 15, an active layer 17, and a second cladding layer 19 are provided on the primary surface 13a of the semiconductor substrate 13. The well layers 23a of the active layer 17 comprise InGaN. A polarization degree P in the LED mode of emission from the active layer of the semiconductor laser that reaches lasing is not less than −1 and not more than 0.1. The polarization degree P of the III-nitride semiconductor laser is defined by P=(I1−I2)/(I1+I2), using an electric field component I1 in the X1 direction and an electric field component I2 in the X2 direction of light in the LED mode.
摘要:
Provided is a group-III nitride semiconductor laser device with a laser cavity of high lasing yield, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
摘要:
A method of making a semiconductor light-emitting device involves the steps of selecting at least one tilt angle for a primary surface of a substrate to evaluate the direction of piezoelectric polarization in a light-emitting layer, the substrate comprising a group III nitride semiconductor; preparing a substrate having the primary surface, the primary surface having the selected tilt angle, and the primary surface comprising the group III nitride semiconductor; forming a quantum well structure and p- and n-type gallium nitride semiconductor layers for the light-emitting layer at the selected tilt angle to prepare a substrate product; measuring photoluminescence of the substrate product while applying a bias to the substrate product, to determine bias dependence of the photoluminescence; evaluating the direction of the piezoelectric polarization in the light-emitting layer at the selected tilt angle on the primary surface of the substrate by the determined bias dependence; determining which of the primary surface or the back surface of the substrate is to be used, based on the evaluation to select a plane orientation of a growth substrate for making the semiconductor light-emitting device; and forming a semiconductor laminate for the semiconductor light-emitting device on the primary surface of the growth substrate. The tilt angle is defined by the primary surface of the substrate and the (0001) plane of the group III nitride semiconductor. Each of the well layer and the barrier layer of the light-emitting layer extends along a reference plane tilting from a plane perpendicular to a reference axis extending along the c-axis of the group III nitride semiconductor.
摘要:
A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon. A GaN based semiconductor layer 23 of an oxygen concentration of 5×1016 cm−3 or more provides an active layer 17 with an excellent crystal quality, and the active layer 17 is grown on the primary surface of the GaN based semiconductor layer 23.
摘要:
Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
摘要:
A Group III nitride semiconductor laser device includes a laser structure including a support substrate with a semipolar primary surface of a hexagonal Group III nitride semiconductor, and a semiconductor region thereon, and an electrode, provided on the semiconductor region, extending in a direction of a waveguide axis in the laser device. The c-axis of the nitride semiconductor is inclined at an angle ALPHA relative to a normal axis to the semipolar surface toward the waveguide axis direction. The laser structure includes first and second fractured faces intersecting with the waveguide axis. A laser cavity of the laser device includes the first and second fractured faces extending from edges of first and second faces. The first fractured face includes a step provided at an end face of an InGaN layer of the semiconductor region and extending in a direction from one side face to the other of the laser device.
摘要:
For a nitride semiconductor light emitting device, a c-axis vector of hexagonal GaN of a support substrate is inclined to an X-axis direction with respect to a normal axis Nx normal to a primary surface. In a semiconductor region an active layer, a first gallium nitride-based semiconductor layer, an electron block layer, and a second gallium nitride-based semiconductor layer are arranged along the normal axis on the primary surface of the support substrate. A p-type cladding layer is comprised of AlGaN, and the electron block layer is comprised of AlGaN. The electron block layer is subject to tensile strain in the X-axis direction. The first gallium nitride-based semiconductor layer is subject to compressive strain in the X-axis direction. The misfit dislocation density at an interface is smaller than that at an interface. A barrier to electrons at the interface is raised by piezoelectric polarization.