摘要:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
摘要:
A metal interconnect structure includes at least a pair of metal lines, a cavity therebetween, and a dielectric metal-diffusion barrier layer located on at least one portion of walls of the cavity. After formation of a cavity between the pair of metal lines, the dielectric metal-diffusion barrier layer is formed on the exposed surfaces of the cavity. A dielectric material layer is formed above the pair of metal lines to encapsulate the cavity. The dielectric metal-diffusion barrier layer prevents diffusion of metal and impurities from one metal line to another metal line and vice versa, thereby preventing electrical shorts between the pair of metal lines.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.
摘要:
A method of selectively altering material properties of a substrate in one region while making a different alteration of material properties in an adjoining region is provided. The method includes selectively masking a first portion of the substrate during a first exposure and selectively masking a second portion of the substrate during a second exposure. Additionally, a mask may be formed having more than one thickness where each thickness will selectively reduce the amount of energy from a blanket exposure of the substrate thereby allowing a substrate to receive different levels of energy dosage in a single blanket exposure.
摘要:
A method of forming airgaps is provided where a blocking mask is applied to a substrate to shield a portion of the substrate from a beam of energy. After irradiation, the blocking mask is removed and a capping material is applied to the substrate. Alternatively, the capping material may be applied before irradiation. The capping material is perforated to allow an etchant to pass therethrough to the substrate below the capping material. The exposed portions of the substrate are removed from underneath the capping material by etching. The capping material is then sealed leaving sealed airgaps within the substrate.
摘要:
A semiconductor substrate having an isolation region and method of forming the same. The method includes the steps of providing a substrate having a substrate layer, a buried oxide (BOX), a silicon on insulator (SOI) layer, a pad oxide layer, and a pad nitride layer, forming a shallow trench region, etching the pad oxide layer to form ears and etching the BOX layer to form undercuts, depositing a liner on the shallow trench region, depositing a soft mask over the surface of the shallow trench region, filling the shallow trench region, etching the soft mask so that it is recessed to the top of the BOX layer, etching the liner off certain regions, removing the soft mask, and filling and polishing the shallow trench region. The liner prevents shorting of the semiconductor device when the contacts are misaligned.
摘要:
Methods of forming an integrated circuit structure utilizing a selectively formed and at least partially oxidized metal cap over a gate, and associated structures. In one embodiment, a method includes providing a precursor structure including a transistor having a metal gate; forming an etch stop layer over an exposed portion of the metal gate; at least partially oxidizing the etch stop layer; and forming a dielectric layer over the at least partially oxidized etch stop layer.
摘要:
A stack of a first metal line and a first dielectric cap material portion is formed within a line trench of first dielectric material layer. A second dielectric material layer is formed thereafter. A line trench extending between the top surface and the bottom surface of the second dielectric material layer is patterned. A photoresist layer is applied over the second dielectric material layer and patterned with a via pattern. An underlying portion of the first dielectric cap material is removed by an etch selective to the dielectric materials of the first and second dielectric material layer to form a via cavity that is laterally confined along the widthwise direction of the line trench and along the widthwise direction of the first metal line. A dual damascene line and via structure is formed, which includes a via structure that is laterally confined along two independent horizontal directions.
摘要:
Embodiments of the present invention provide a structure. The structure includes a plurality of field-effect-transistors having gate stacks formed on top of a semiconductor substrate, the gate stacks having spacers formed at sidewalls thereof; and one or more conductive contacts formed directly on top of the semiconductor substrate and interconnecting at least one source/drain of one of the plurality of field-effect-transistors to at least one source/drain of another one of the plurality of field-effect-transistors, wherein the one or more conductive contacts is part of a low-profile local interconnect that has a height lower than a height of the gate stacks.
摘要:
Self-aligned contacts in a metal gate structure and methods of manufacture are disclosed herein. The method includes forming a metal gate structure having a sidewall structure. The method further includes recessing the metal gate structure and forming a masking material within the recess. The method further includes forming a borderless contact adjacent to the metal gate structure, overlapping the masking material and the sidewall structure.