Abstract:
A method, implemented in an electronic processing system that includes a memory and one or more processors, includes receiving, at the electronic processing system, operational data indicative of when a vehicle is driven according to an automated control mode in which an automated driving system of the vehicle is active, storing the received operational data in the memory, and determining, via the one or more processors and based on the stored operational data, a risk indicator representing a risk of loss associated with the vehicle.
Abstract:
Methods and systems for leveraging a plurality of sensor devices distributed in a geographical area to monitor vehicle usage for assessing, pricing, and provisioning distance-based vehicle insurance. One or more sensor devices may capture information associated with a vehicle and communicate the information to an insurance provider. In aspects, the insurance provider may analyze the information to determine a distance that the vehicle travels within a particular time period. Further, the insurance provider may determine a vehicle usage unit based on the distance traveled as well as provide various insurance coverage types to a customer associated with the vehicle. Based on a selected coverage type, the insurance provider may generate an insurance quote for a policy having an amount of the vehicle usage units and may facilitate a purchase transaction with the customer for the insurance policy.
Abstract:
A method and computer system provides vehicle insurance underwriting and ratings to a policy holder. The method and system receives captured sensor data associated with a vehicle from the policy holder. For example, the captured sensor data may include vehicle image and sound data. The method and system may compare the received data to baseline data to determine an operating condition of the vehicle. Based at least in part on the determined operating condition of the vehicle, the method and system may identify a risk of loss for the vehicle. The method and system may then determine an insurance premium for the vehicle based at least in part on the identified risk of loss, and provide the determined insurance premium to the policy holder. In some embodiments, the sensor data is image and sound data captured by a user's mobile phone.
Abstract:
Methods and systems for processing credits for customers having distance-based insurance policies for vehicles. According to aspects, a distance-based insurance policy of a vehicle specifies an amount of distance units for insured vehicle travel and has an associated policy term. Upon expiration of the policy term, an insurance provider receives an odometer reading and uses the odometer reading to calculate an amount of unused distance units. The insurance provider may determine one or more types of credit that are based on the amount of unused distance units. The insurance provider may also apply the one or more types of credit to an account of the customer.
Abstract:
Systems and methods for analyzing image data to identify cabinet products are disclosed. A computer-implemented method may include receiving, from an electronic device via a network connection, at least one digital image depicting a cabinet. The method also may include analyzing, by one or more processors, the at least one digital image to determine a first set of characteristics of the cabinet. Additionally, the method may include accessing, by the one or more processors from memory, a second set of characteristics corresponding to a plurality of cabinet products and comparing the first set of characteristics to the second set of characteristics to identify a cabinet product of the plurality of cabinet products that matches the cabinet. Further, the method may include transmitting, to the electronic device via the network connection, an indication of the cabinet product.
Abstract:
Methods and systems for monitoring use, determining risk, and pricing insurance policies for a vehicle having autonomous or semi-autonomous operation features are provided. According to certain aspects, a computer-implemented method for generating or updating usage-based insurance policies for an autonomous or semi-autonomous vehicle may be provided. A request to generate an insurance quote may be received via wireless communication, and with the customer's permission, risk levels associated with intended usage by the customer of the vehicle may be determined. An insurance policy may be adjusted based upon the risk levels and the intended vehicle usage. The insurance policy may then be presented on the customer's mobile device for review and approval. In some aspects, the vehicle may be rented, and the intended vehicle usage is measured in distance or duration of vehicle operation. Insurance discounts may be provided to risk averse vehicle owners based upon low risk levels.
Abstract:
Methods and systems for monitoring use, determining risk, and pricing insurance policies for a vehicle having autonomous or semi-autonomous operation features are provided. According to certain aspects, a computer-implemented method for generating or updating usage-based insurance policies for autonomous or semi-autonomous vehicles may be provided. A request to generate an insurance quote may be received via wireless communication, and with the customer's permission, risk levels associated with intended usage by the customer of an autonomous or semi-autonomous vehicle may be determined. An insurance policy may be adjusted based upon the risk levels and the intended vehicle usage. The insurance policy may then be presented on the customer's mobile device for review and approval. In some aspects, the vehicle may be rented, and the intended vehicle usage is measured in distance or duration of vehicle operation. Insurance discounts may be provided to risk averse vehicle owners based upon low risk levels.
Abstract:
A system for determining drone operation rules configured to (i) receive a plurality of telematics data from a plurality of missions; (ii) analyze the plurality of telematics data to determine one or more mission trends; and (iii) determine one or more rules based upon the one or more mission trends.
Abstract:
The present disclosure generally relates to systems and methods for generating data representative of an individual's insurance risk based on actual driving behaviors and driving environment. The systems and methods may include collecting data from personal electronic device sensors, vehicle sensors, driver inputs, environment sensors and interactions of the vehicle, the driver and the environment. The systems and methods may further include analyzing the data to generate data representative of an individual insurance risk. The systems and methods may further include presenting the data representative of the individual insurance risk to an individual.
Abstract:
Methods and systems for monitoring use, determining risk, and pricing insurance policies for a vehicle having autonomous or semi-autonomous operation features are provided. According to certain aspects, vehicle operation safety may be enhanced. An environmental or weather condition (e.g., hail, storm, wind) may be identified that presents a hazard to an autonomous or semi-autonomous vehicle. With the customer's permission, when it is determined that the vehicle is parked in an unprotected location, a protected or covered location to park the vehicle may be identified, a route to that location may be determined, and the vehicle may be directed to travel automatically to the protected location under the operation of autonomous operation features. Insurance discounts or cost savings may be provided to risk averse insurance customers based upon the self-parking functionality that will reduce or mitigate damage to insured vehicles caused by adverse conditions, falling trees or power lines, hail, etc.