Abstract:
A laminated structure includes a ferromagnetic layer, a multiferroic layer provided on one surface of the ferromagnetic layer, and a ferroelectric layer which is provided on the multiferroic layer opposite to the ferromagnetic layer and has a permittivity greater than that of the multiferroic layer.
Abstract:
A nonmagnetic spacer layer in a magnetoresistive effect element includes a nonmagnetic metal layer that is formed of Ag and at least one of a first insertion layer that is disposed on a bottom surface of the nonmagnetic metal layer and a second insertion layer that is disposed on a top surface of the nonmagnetic metal layer. The first insertion layer and the second insertion layer include an Fe alloy that is expressed by FeγX1-γ. Here, X denotes one or more elements selected from a group consisting of O, Al, Si, Ga, Mo, Ag, and Au, and γ satisfies 0
Abstract:
A magnetoresistance effect element has a first ferromagnetic metal layer, a second ferromagnetic metal layer, and a tunnel barrier layer that is sandwiched between the first and second ferromagnetic metal layers, and the tunnel barrier layer has a spinel structure represented by a composition formula AGa2Ox (0
Abstract:
A higher oscillation output is realized in a magnetic element utilizing high frequency characteristics of a magnetoresistive effect element. A magnetic element 1 includes a magnetoresistive effect film 10 including a magnetic pinned layer 14 and a magnetic free layer 12 with a non-magnetic spacer layer 13 interposed therebetween, and a pair of electrodes (lower electrode layer 11 and upper electrode layer 15) arranged with the magnetoresistive effect film 10 interposed therebetween in a stacking direction of the magnetoresistive effect film 10, wherein, given that a minimum value of an area of the magnetic free layer 12 in a section perpendicular to the stacking direction is denoted by Sf, and that a minimum value of an area of the magnetic pinned layer 14 in a section perpendicular to the stacking direction is denoted by Spm, relation of Sf>Spm is satisfied.
Abstract:
A spin inductor includes a laminated body having a first inductor layer, a spacer layer, and a second inductor layer. The first inductor layer includes a first wiring layer, and a first ferromagnetic layer in contact with the first wiring layer. The second inductor layer includes a second wiring layer, and a second ferromagnetic layer in contact with the second wiring layer. The spacer layer is sandwiched between the first ferromagnetic layer and the second wiring layer.
Abstract:
A magnetoresistance effect element includes a first ferromagnetic layer, a second ferromagnetic layer, and a non-magnetic layer positioned between the first ferromagnetic layer and the second ferromagnetic layer, and at least one of the first ferromagnetic layer and the second ferromagnetic layer is a Heusler alloy represented by the following General Formula (1):
Co2FeαXβ (1)
(in Formula (1), X represents one or more elements selected from the group consisting of Mn, Cr, Si, Al, Ga and Ge, and α and β represent numbers that satisfy 2.3≤α+β, α
Abstract:
A magneto resistive element includes a laminate including a first ferromagnetic layer, a second ferromagnetic layer, and a non-magnetic layer and an insulating layer configured to cover at least a part of a side surface of the laminate and including an insulator. The first ferromagnetic layer has a first non-nitride region and a first nitride region that is closer to the insulating layer than the first non-nitride region and contains nitrogen.
Abstract:
A magnetoresistive effect element includes: a first ferromagnetic layer; a second ferromagnetic layer; and a non-magnetic layer provided between the first ferromagnetic layer and the second ferromagnetic layer, wherein the non-magnetic layer includes a first layer and a second layer, and wherein a lattice constant α of the first layer and a lattice constant β of the second layer satisfy a relationship of β−0.04×α≤2×α≤β+0.04 ×α.
Abstract:
A magnetoresistance effect element includes a first ferromagnetic layer, a second ferromagnetic layer, and a tunnel barrier layer that is interposed between the first ferromagnetic layer and the second ferromagnetic layer. The tunnel barrier layer is a stacked body including one or more first oxide layers having a spinel structure and one or more second oxide layers having a spinel structure with a composition which is different from a composition of the first oxide layer.
Abstract:
A magnetoresistance effect element includes a first ferromagnetic layer, a second ferromagnetic layer, a first non-magnetic layer; and a second non-magnetic layer, wherein, the first ferromagnetic layer and the second ferromagnetic layer are formed so that at least one of them includes a Heusler alloy layer, the first non-magnetic layer is provided between the first ferromagnetic layer and the second ferromagnetic layer, the second non-magnetic layer is in contact with any surface of the Heusler alloy layer and has a discontinuous portion with respect to a lamination surface, and the second non-magnetic layer is made of a material different from that of the first non-magnetic layer and is a (001)-oriented oxide containing Mg.