Abstract:
A method and apparatus for ultraviolet (UV) and extreme ultraviolet (EUV) lithography patterning is provided. A UV or EUV light beam is generated and directed to the surface of a substrate disposed on a stage and coated with photoresist. A laminar flow of a layer of inert gas is directed across and in close proximity to the substrate surface coated with photoresist during the exposure, i.e. lithography operation. The inert gas is exhausted quickly and includes a short resonance time at the exposure location. The inert gas flow prevents flue gasses and other contaminants produced by outgassing of the photoresist, to precipitate on and contaminate other features of the lithography apparatus.
Abstract:
An out-of-band (OoB) suppression layer is applied on a reflective multiplayer (ML) coating, so as to avoid the OoB reflection and to enhance the optical contrast at 13.5 nm A material having a low reflectivity at wavelength of 193-257 nm, for example, silicon carbide (SiC), is used as the OoB suppression layer. A method of fabricating an EUV mask having the OoB suppression layer and a method of inspecting an EUV mask having the OoB suppression are also provided.
Abstract:
A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
Abstract:
The present disclosure relates to an extreme ultraviolet (EUV) pellicle having a pellicle film connected to a pellicle frame. In some embodiments, the EUV pellicle has a substrate, and an adhesive material disposed onto the substrate. A pellicle frame is connected to the substrate by way of the adhesive material. The pellicle frame is configured to mount the substrate to an extreme ultraviolet (EUV) reticle.
Abstract:
A method of fabricating a semiconductor device is disclosed. The method includes forming a radiation-removable-material (RRM) layer over a substrate and removing a first portion of the RRM layer in a first region of the substrate by exposing the first portion of the RRM layer to a radiation beam. A second portion of the RRM layer in a second region of the substrate remains after the removing of the first portion of the RRM layer in the first region. The method also includes forming a selective-forming-layer (SFL) over the second portion of the RRM layer in the second region of the substrate and forming a material layer over the first region of the substrate.
Abstract:
An EUV collector is rotated between or during operations of an EUV photolithography system. Rotating the EUV collector causes contamination to distribute more evenly over the collector's surface. This reduces the rate at which the EUV photolithography system loses image fidelity with increasing contamination and thereby increases the collector lifetime. Rotating the collector during operation of the EUV photolithography system can induce convection and reduce the contamination rate. By rotating the collector at sufficient speed, some contaminating debris can be removed through the action of centrifugal force.
Abstract:
The present disclosure relates to an extreme ultraviolet (EUV) pellicle having a pellicle film connected to a pellicle frame. In some embodiments, the EUV pellicle has a substrate, and an adhesive material disposed onto the substrate. A pellicle frame is connected to the substrate by way of the adhesive material. The pellicle frame is configured to mount the substrate to an extreme ultraviolet (EUV) reticle.
Abstract:
An EUV collector is rotated between or during operations of an EUV photolithography system. Rotating the EUV collector causes contamination to distribute more evenly over the collector's surface. This reduces the rate at which the EUV photolithography system loses image fidelity with increasing contamination and thereby increases the collector lifetime. Rotating the collector during operation of the EUV photolithography system can induce convection and reduce the contamination rate. By rotating the collector at sufficient speed, some contaminating debris can be removed through the action of centrifugal force.
Abstract:
The present disclosure relates to a method of forming an EUV pellicle having an pellicle film connected to a pellicle frame without a supportive mesh, and an associated apparatus. In some embodiments, the method is performed by forming a cleaving plane within a substrate at a position parallel to a top surface of the substrate. A pellicle frame is attached to the top surface of the substrate. The substrate is cleaved along the cleaving plane to form a pellicle film comprising a thinned substrate coupled to the pellicle frame. Prior to cleaving the substrate, the substrate is operated upon to reduce structural damage to the top surface of substrate during formation of the cleaving plane and/or during cleaving the substrate. Reducing structural damage to the top surface of the substrate improves the durability of the thinned substrate and removes a need for a support structure for the pellicle film.