Abstract:
In some embodiments, a patterned photomask has a plurality of shielding layers. In some embodiments, a photomask for mask patterning is described. The photomask includes a phase shift layer overlying a transparent layer. The photomask also includes a first shielding layer overlying the phase shift layer. The first shielding layer has a first thickness and a first optical density. The photomask further includes a second shielding layer overlying the first shielding layer. The second shielding layer has a second thickness and a second optical density. The second thickness is less that than the first thickness and the second optical density is less than the first optical density.
Abstract:
A method includes depositing a first material layer over a first substrate; and depositing a graphene layer over the first material layer. The method further includes depositing an amorphous silicon layer over the graphene layer and bonding the amorphous silicon layer to a second substrate, thereby forming an assembly. The method further includes annealing the assembly, thereby converting the amorphous silicon layer to a silicon oxide layer. The method further includes removing the first substrate from the assembly and removing the first material layer from the assembly, thereby exposing the graphene layer.
Abstract:
In some embodiments, a mask patterning system includes an electronic memory configured to store an integrated circuit mask layout. A computation tool determines a number of radiation shots to be used to write the integrated circuit mask layout to a physical mask. The computation tool also determines a scaling factor which accounts for expected thermal expansion of the physical mask due to the number of radiation shots used in writing the integrated circuit mask layout to the physical mask. An ebeam or laser writing tool writes the integrated circuit mask layout to the physical mask based on the scaling factor and by using the number of radiation shots.
Abstract:
A method comprises: (a) transforming a layout of a layer of an integrated circuit (IC) or micro electro-mechanical system (MEMS) to a curvilinear mask layout; (b) replacing at least one pattern of the curvilinear mask layout with a previously stored fracturing template having approximately the same shape as the pattern, to form a fractured IC or MEMS layout; and (c) storing, in a non-transitory storage medium, an e-beam generation file including a representation of the fractured IC or MEMS layout, to be used for fabricating a photomask.
Abstract:
A photolithographic mask assembly according to the present disclosure accompanies a photolithographic mask. The photolithographic mask includes a capping layer over a substrate and an absorber layer disposed over the capping layer. The absorber layer includes a first main feature area, a second main feature area, and a venting feature area disposed between the first main feature area and the second main feature area. The venting feature area includes a plurality of venting features.
Abstract:
A spin dry etching process includes loading an object into a dry etching system. A dry etching process is performed to the object, and the object is spun while the dry etching process is being performed. The spin dry etching process is performed using a semiconductor fabrication system. The semiconductor fabrication system includes a dry etching chamber in which a dry etching process is performed. A holder apparatus has a horizontally-facing slot that is configured for horizontal insertion of an etchable object therein. The etchable object includes either a photomask or a wafer. A controller is communicatively coupled to the holder apparatus and configured to spin the holder apparatus in a clockwise or counterclockwise direction while the dry etching process is being performed. An insertion of the etchable object into the horizontally-facing slot of the holder apparatus restricts a movement of the object as the dry etching process is performed.
Abstract:
A photomask includes a transparent substrate and a shielding pattern disposed on the transparent substrate. The shielding pattern includes shielding island structures. The shielding island structures are separated from and spaced apart from one another by dividing lanes. The dividing lanes expose the underlying transparent substrate. The photomask is configured for a light of a wavelength, and the dividing lanes reduce or hinder a transmission of the light of the wavelength.
Abstract:
Some embodiments pertain to a photomask for mask patterning. The photomask includes a phase shift layer overlying a transparent layer, a first shielding layer overlying the phase shift layer, and a second shielding layer overlying the first shielding layer. The first shielding layer has a first optical density, and the second shielding layer has a second optical density. The second optical density is less than the first optical density.
Abstract:
Some embodiments pertain to a photomask for mask patterning. The photomask includes a phase shift layer overlying a transparent layer, a first shielding layer overlying the phase shift layer, and a second shielding layer overlying the first shielding layer. The first shielding layer has a first optical density, and the second shielding layer has a second optical density. The second optical density is less than the first optical density.
Abstract:
Masks and methods of forming the same are disclosed. The mask includes a substrate, a phase shift layer, a shading layer and a passivation layer. The phase shift layer is disposed over the substrate. The shading layer is disposed over the phase shift layer. The passivation layer is disposed over and in physical contact with the shading layer.