摘要:
A Schottky barrier diode has a Schottky contact region formed in an n epitaxial layer disposed on a GaAs substrate and an ohmic electrode surrounding the Schottky contact region. The ohmic electrode is disposed directly on an impurity-implanted region formed on the substrate. An insulating region is formed through the n epitaxial layer so that an anode bonding pad is isolated form other elements of the device at a cathode voltage. The planar configuration of this device does not include the conventional polyimide layer, and thus has a better high frequency characteristics than conventional devices.
摘要:
A local oscillation FET has a source connecting pad, a drain connecting pad and a gate connecting pad. The source connecting pad occupies one corner of a substrate, and the drain and gate connecting pads are placed at the neighboring corners so that the three connecting pads form an L shape on the substrate. As a modification to this configuration, another source connecting pad is placed at the remaining corner of the substrate so that the drain and gate connecting pads are shielded from each other by the two source connecting pads. These device configurations contribute to size reduction of the local oscillation FET.
摘要:
With a microwave FET, an incorporated Schottky junction capacitance or PN junction capacitance is small and such a junction is weak against static electricity. However, with a microwave device, the method of connecting a protecting diode cannot be used since this method increases the parasitic capacitance and causes degradation of the high-frequency characteristics. In order to solve the above problems, a protecting element, having a first n+-type region-insulating region-second n+-type region arrangement is connected in parallel between two terminals of a protected element having a PN junction, Schottky junction, or capacitor. Since discharge can be performed between the first and second n+ regions that are adjacent each other, electrostatic energy that would reach the operating region of an FET can be attenuated without increasing the parasitic capacitance.
摘要:
A high-resistance element is connected as a part of a control resistor between a control terminal pad and a protecting element, immediately near the control terminal pad. Thus, even if a high-frequency analog signal leaks to the control resistor, the leaked signal is attenuated by the high-resistance element. This substantially eliminates the possibility of the high-frequency analog signal transmitting to the control terminal pad. Accordingly, an increase in insertion loss can be suppressed.
摘要:
Since a 5 GHz-band broadband has a frequency twice that of 2.4 GHz, the parasitic capacitance greatly influences deterioration in isolation of a switching device used in this frequency region. Therefore, to improve isolation, a shunt FET is added to the device. The switching device also includes a protecting element that has a first n+-type region, an insulating region and a second n+-type region. This protecting element is connected in parallel between two electrodes of the shunt FET. Since electrostatic charges are discharged between the first and second n+-type regions, the electrostatic energy reaching an operation region of the shunt FET can be reduced without an increase in parasitic capacitance.
摘要:
A Schottky barrier diode has a Schottky electrode formed on an operation region of a GaAs substrate and an ohmic electrode surrounding the Schottky electrode. The ohmic electrode is disposed directly on an impurity-implanted region formed on the substrate. A nitride film insulates the ohmic electrode from a wiring layer connected to the Schottky electrode crossing over the ohmic electrode. The planar configuration of this device does not include the conventional polyimide layer, and thus has a better high frequency characteristics than conventional devices.
摘要:
A protecting element, comprising a first n+-type region, an insulating region, and a second n+-type region, is connected in parallel between two terminals of an FET. Since discharge across the first and second n+ regions is enabled, electrostatic energy that reaches the operating region of the FET can be attenuated without increasing the parasitic capacitance.
摘要:
With a microwave FET, an incorporated Schottky junction capacitance or PN junction capacitance is small and such a junction is weak against static electricity. However, with a microwave device, the method of connecting a protecting diode cannot be used since this method increases the parasitic capacitance and causes degradation of the high-frequency characteristics. In order to solve the above problems, a protecting element, having a first n+-type region—insulating region—second n+-type region arrangement is connected in parallel between two terminals of a protected element having a PN junction, Schottky junction, or capacitor. Since discharge can be performed between the first and second n+ regions that are adjacent each other, electrostatic energy that would reach the operating region of an FET can be attenuated without increasing the parasitic capacitance.
摘要:
The conventional compound semiconductor switching device is prone to have a large chip size as the gate width needs to be large for achieving a low insertion loss and the separation between the connecting pad and the circuit wiring needs to be larger than 20 μm for obtaining a proper isolation between them. The overall chip size is reduced, first, by reducing the gate width of the switching FET operating at frequencies above 2.4 GHz to 700 μm or smaller together with the omission of the shunt FET, and, then, by reducing the separation between the connecting pad and the circuit wiring to 20 μm or smaller. This reduction of the separation is made possible by the introduction of an insulating film and a impurity region between the outermost portion of the connecting pad and the substrate for preventing the extension of the depletion layer. The manufacturing method of this device does not need any additional processing step for accommodating the above structure, and is capable of producing a device having a size of one fifth of the conventional device.
摘要:
Posts are disposed at the surroundings of an FET and a shield metal supported by the posts is placed above the FET to create a void between the FET and the shield metal. Since the separation between the FET and the shield metal is small, the resin does not enter the void. A resin layer cover the shield metal. The shield metal is connected to an electrode pad that receives a DC control signal. Although high frequency signals that are applied to the FET may leak between the source and drain electrodes of the FET through the resin layer covering the FET even when the FET is switched off, the void and the shield metal prevent such signal leakage.