摘要:
A method of forming a photovoltaic element according to the present invention comprises at least the steps of depositing a metal layer on a supporting member, depositing a metal oxide layer on the above metal layer, and arranging at least one or more pin structures, each of which is formed by stacking the predetermined n-type, i-type and p-type semiconductor layers, on a substrate formed by stacking on the above supporting member, the above metal layer and the above metal oxide layer in this order, wherein a step of subjecting the supporting member having the metal layer formed thereon to heat treatment is carried out between the two steps of depositing the above metal layer and depositing the above metal oxide layer. Accordingly, the present invention provides a method of forming a photovoltaic element which enables the solution of the problem that defective portions appear in a semiconductor layer because the semiconductor layer, which functions as a photoelectric converting layer, formed on irregularities of a metal layer surface cannot fully cover the metal layer due to the existence of projecting portions or portions with great height difference on a part of the irregularities.
摘要:
The photovoltaic element of the present invention is a photovoltaic element comprised of a semiconductor-junctioned element, characterized in that the element includes a first electrically conductive type semiconductor layer, a non-crystalline i type semiconductor layer, a microcrystalline i type semiconductor layer and a microcrystalline second electrically conductive type semiconductor layer and is pin-junctioned, and a method of and an apparatus for manufacturing the same are characterized by efficiently and continuously mass-producing the photovoltaic element having an excellent current-voltage characteristic and excellent photoelectric conversion efficiency. Thereby, there are provided a photovoltaic element in which the junction interface between the non-crystalline i type layer and the microcrystalline electrically conductive type layer has good grating consistency and which has an excellent current-voltage characteristic and excellent photoelectric conversion efficiency, and a method of and an apparatus for continuously mass-producing the same.
摘要:
A flow control device has a body (41), a plurality of elastic flow control tube (51-54) provided in the body (41), a single fluid path (55) in communication with the flow control tube (51-54), a slider (56) slidable relative to the body (41), and a valve mechanism (71) for selectively pressing and shutting the flow control tube (51-54) in accordance with a slide position of the slider (56).
摘要:
A fluid supplying apparatus having a rubber elastic film (11) with fluid contained therein, an upstream tube (30), an intermediate station (40) disposed at a distal end of the upstream tube (30) and a downstream tube (27) connected to the intermediate station (40) is provided. The upstream tube (30) has two flow paths (31A and 32A) formed in a predetermined length extending in a longitudinal direction. The intermediate station (40) has a case (41), the case (41) having a fluid outlet (51) to which the downstream tube (27) is connected, a first communicating channel (52) for intercommunicating the fluid outlet (51) and one of the flow paths (31A), a reservoir (53) in communication with the other flow path (32A), a second communicating channel (55) having a check valve (54) at an intermediate portion thereof and intercommunicating the reservoir (53) and the fluid outlet (51), and a pressing member (56) for discharging the fluid stored in the reservoir (53) to the second communicating channel (55).
摘要:
The invention provides a process for producing a semiconductor layer by introducing a raw gas into a discharge chamber and supplying high-frequency power to the chamber to decompose the raw gas by discharge, thereby forming a semiconductor layer on a substrate within the discharge chamber, the process comprising the steps of supplying high-frequency power of at least very high frequency (VHF) as the high-frequency power; supplying bias power of direct current power and/or high-frequency power of radio-frequency (RF) together with the high-frequency power of VHF to the discharge chamber; and controlling a direct current component of an electric current flowing into an electrode, to which the bias power is supplied, so as to fall within a range of from 0.1 A/m2 to 10 A/m2 in terms of a current density based on the area of an inner wall of the discharge chamber. A good-quality semiconductor layer can be deposited over a large area at a high speed.
摘要翻译:本发明提供一种通过将原料气体引入放电室并向室内供给高频电力以通过放电分解原料气体从而在放电室内的基板上形成半导体层来制造半导体层的方法, 过程包括以下步骤:提供至少非常高频(VHF)的高频功率作为高频功率; 将直流电力和/或射频(RF)的高频功率与VHF的高频功率一起提供给放电室; 并且以电流密度为基础控制流入施加偏压功率的电极的电流的直流分量,以0.1A / m 2至10A / m 2的范围内 放电室内壁面积。 高质量的半导体层可以在大面积上高速沉积。
摘要:
A photoelectric conversion element comprising a substrate, a plurality of semiconductor junctions made of non-single-crystalline semiconductors formed on the substrate, and a surface material covering the semiconductor junctions is provided. The semiconductor junctions have respective absorption spectra different from each other and respective photo-deterioration rates different from each other. A photo-current generated by the semiconductor junction of the least deterioration rate is larger than that by the semiconductor junction of the greatest deterioration rate when no surface material is present, and when present, the surface material absorbs light in a range corresponding to a part of the absorption spectrum of the semiconductor junction of the least deterioration rate, so that the photo-current generated by the semiconductor junction of the least deterioration rate becomes smaller than that by the semiconductor junction of the greatest deterioration rate.
摘要:
A plasma processing method for processing a substrate includes a discharge beginning step of supplying a second high-frequency power into a processing chamber through an impedance matching circuit and then supplying a first high-frequency power larger than a power used in processing into the processing chamber to generate a plasma. An adjustment step of reducing the first high-frequency power to be close to the value used in processing, increasing the second high-frequency power to be close to the value in processing, and then adjusting the first high-frequency power to obtain a plasma strength of a predetermined value is part of the method. The plasma processing step of causing the impedance matching circuit to perform a matching operation and simultaneously adjusting the first high-frequency power to obtain a plasma strength of a desired value in processing is also part of the method. Plasma discharge can be automatically, smoothly begun with high reproducibility, and stable plasma discharge can be maintained. Even in the case of disappearance of discharge, plasma discharge can be quickly restarted.
摘要:
The present invention aims to provide a continuous forming method and apparatus for functional deposited films having excellent characteristics while preventing any mutual mixture of gases between film forming chambers having different pressures, wherein semiconductor layers of desired conductivity type are deposited on a strip-like substrate within a plurality of film forming chambers, by plasma CVD, while the strip-like substrate is moved continuously in a longitudinal direction thereof through the plurality of film forming chambers connected via gas gates having means for introducing a scavenging gas into a slit-like separation passage, characterized in that at least one of the gas gates connecting the i-type layer film forming chamber for forming the semiconductor junction and the n- or p-type layer film forming chamber having higher pressure than the i-type layer film forming chamber has the scavenging gas introducing position disposed on the n- or p-type layer film forming chamber side off from the center of the separation chamber of the gas gate.
摘要:
A method for manufacturing a photoelectric conversion element containing at least one pin junction, wherein a diffusion preventing layer is provided between an n-type layer and an i-type layer and/or between an i-type layer and a p-type layer, and the diffusion preventing layer is deposited such that deposition temperature differs in its thickness direction.
摘要:
A deposited film forming method includes the steps of: continuously carrying a long substrate into or out of a vacuum chamber, flowing a first deposited film forming gas in a reverse direction parallel to the substrate and opposite to a conveying direction of the substrate from first gas discharging means into the vacuum chamber, exhausting the gas from first gas exhausting means, flowing a second deposited film forming gas in a forward direction parallel to the substrate and equivalent to the conveying direction of the substrate, exhausting the gas through the second gas exhausting means, and applying a discharge energy to the first and second gases.