Abstract:
A cleaning process for oxide includes the following step. A substrate having a first area and a second area is provided. A first oxide layer is formed on the substrate of the first area and the second area. An ammonium hydroxide (NH4OH) and hydrogen peroxide (H2O2) containing process is performed on the first oxide layer of the first area and the second area. A photoresist layer covers the first oxide layer of the first area while exposing the first oxide layer of the second area. The first oxide layer of the second area is removed. The photoresist layer is then removed.
Abstract:
A semiconductor structure includes a fin-shaped structure and a gate. The fin-shaped structure is located in a substrate, wherein the fin-shaped structure has a through hole located right below a suspended part. The gate surrounds the suspended part. Moreover, the present invention also provides a semiconductor process including the following steps for forming said semiconductor structure. A substrate is provided. A fin-shaped structure is formed in the substrate, wherein the fin-shaped structure has a bottom part and a top part. A part of the bottom part is removed to form a suspended part in the corresponding top part, thereby forming the suspended part over a through hole. A gate is formed to surround the suspended part.
Abstract:
An epitaxial process applying light illumination includes the following steps. A substrate is provided. A dry etching process and a wet etching process are performed to form a recess in the substrate, wherein an infrared light illuminates while the wet etching process is performed. An epitaxial structure is formed in the recess.
Abstract:
A method for fabricating semiconductor device with fin-shaped structure is disclosed. The method includes the steps of: forming a fin-shaped structure on a substrate; forming a first dielectric layer on the substrate and the fin-shaped structure; depositing a second dielectric layer on the first dielectric layer; etching back a portion of the second dielectric layer; removing part of the first dielectric layer to expose a top surface and part of the sidewall of the fin-shaped structure; forming an epitaxial layer to cover the exposed top surface and part of the sidewall of the fin-shaped structure; and removing a portion of the second dielectric layer.
Abstract:
A strained silicon substrate structure includes a first transistor and a second transistor disposed on a substrate. The first transistor includes a first gate structure and two first source/drain regions disposed at two sides of the first gate structure. A first source/drain to gate distance is between each first source/drain region and the first gate structure. The second transistor includes a second gate structure and two source/drain doped regions disposed at two side of the second gate structure. A second source/drain to gate distance is between each second source/drain region and the second gate structure. The first source/drain to gate distance is smaller than the second source/drain to gate distance.
Abstract:
A semiconductor process includes the following steps. Two gates are formed on a substrate. A recess is formed in the substrate beside the gates. A surface modification process is performed on a surface of the recess to modify the shape of the recess and change the contents of the surface.
Abstract:
The present invention provides a method for forming a semiconductor structure, including the following steps: Firstly, a substrate is provided, the substrate has a first region defined thereon, a plurality of fin structure is disposed within the first region, and an insulating layer is disposed on the substrate and between each fin structure; next, a first material layer is then formed on the insulating layer, and the fin structures is exposed simultaneously, afterwards, the fin structure is partially removed, and an epitaxial layer is then formed on the top surface of each remained fin structure.
Abstract:
A semiconductor device with fin-shaped structure is disclosed. The semiconductor device includes: a substrate; a fin-shaped structure on the substrate; and an epitaxial layer on a top surface and part of the sidewall of the fin-shaped structure, in which the epitaxial layer and the fin-shaped structure includes a linear gradient of germanium concentration therebetween.
Abstract:
A semiconductor structure for forming FinFETs is described. The semiconductor structure includes a semiconductor substrate, a plurality of odd fins of the FinFETs on the substrate, and a plurality of even fins of the FinFETs on the substrate between the odd fins of the FinFETs. The odd fins of the FinFETs are defined from the substrate. The even fins of the FinFETs are different from the odd fins of the FinFETs in at least one of the width and the material, and may be further different from the odd fins of the FinFETs in the height.
Abstract:
A semiconductor process includes the steps of providing a substrate with fin structures formed thereon, performing an epitaxy process to grow an epitaxial structure on each fin structure, forming a conformal cap layer on each epitaxial structure, where adjacent conformal cap layers contact each other, and performing an etching process to separate contacting conformal cap layers.