Abstract:
An object of the present invention is to provide a chemical liquid purification method which makes it possible to obtain a chemical liquid having excellent defect inhibition performance. Another object of the present invention is to provide a chemical liquid. The chemical liquid purification method according to an embodiment of the present invention is a chemical liquid purification method including obtaining a chemical liquid by purifying a substance to be purified containing an organic solvent, in which a content of the stabilizer in the substance to be purified with respect to the total mass of the substance to be purified is equal to or greater than 0.1 mass ppm and less than 100 mass ppm.
Abstract:
An object of the present invention is to provide an ion-exchange membrane for simply and inexpensively separating and purifying exosomes present in a biological sample such as serum. The invention relates to a cellulose-based ion-exchange membrane containing a cellulose-based polymer having at least one hydroxyl group or acetyl group at the 2-, 3-, or 6-position being replaced with a positively charged compound. The invention also relates to a method for purifying exosomes, including subjecting a sample containing exosomes to membrane permeation by using the cellulose-based ion-exchange membrane to allow for adsorption of the exosomes, bringing the membrane into contact with a washing liquid to remove impurities, and bringing the membrane into contact with an eluent to allow for desorption of the exosomes.
Abstract:
Described herein are processes and apparatus for the high purity and high concentration recovery of multivalent products via continuous ion exchange from aqueous solutions for further down-stream purification.
Abstract:
A cartridge for treating drinking water with an ion-exchange material, wherein the ion-exchange material includes added silver, and wherein means for removing silver are arranged at the outlet of the cartridge.
Abstract:
Compositions for reducing the aggregate content of a protein preparation include a first substrate having a first surface-bound ligand possessing a metal affinity functionality and a second surface-bound ligand optionally provided on a second substrate and having an aggregate charge opposite to that of the metal affinity functionality of the first substrate, wherein the first surface-bound ligand and the second surface-bound ligand are positioned such that the protein preparation may contact both the first surface-bound ligand and the second surface-bound ligand simultaneously.
Abstract:
A porous ion exchanger includes an open cell structure including interconnected macropores and mesopores whose average diameter is in a range of 1 to 1000 μm existing on walls of the macropores. Moreover, a total pore volume is in a range of 1 to 50 ml/g, ion exchange groups are uniformly distributed, and an ion exchange capacity is not less than 0.5 mg equivalent/g of dry porous ion exchanger. The porous ion exchanger can be used as an ion exchanger filled into a deionization module of an electrodeionization water purification device, solid acid catalyst, adsorbent, and filler for chromatography.